- Towards Constructing HMM Structure for Speech Recognition With Deep Neural Fenonic Baseform Growing. IEEE Access 9, 2021, 39098--39110 mehr… Volltext ( DOI )
- Lightweight End-to-End Speech Enhancement Generative Adversarial Network Using Sinc Convolutions. Applied Sciences 11 (16), 2021, 7564 mehr… Volltext ( DOI )
- Light-Weight Self-Attention Augmented Generative Adversarial Networks for Speech Enhancement. Electronics 10 (13), 2021, 1586 mehr… Volltext ( DOI )
- Adversarial Joint Training with Self-Attention Mechanism for Robust End-to-End Speech Recognition. arXiv preprint arXiv:2104.01471, 2021 mehr… Volltext ( DOI )
- Deep neural fenonic baseform growing: A novel approach to construct HMM topologies for speech recognition. 2020 International Conference on High Performance Computing Simulation (HPCS), 2021 mehr…
- A Global Discriminant Joint Training Framework for Robust Speech Recognition. 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, 2021 mehr… Volltext ( DOI )
- Induced Local Attention for Transformer Models in Speech Recognition. International Conference on Speech and Computer, 2021 mehr… Volltext (mediaTUM)
- Regularized forward-backward decoder for attention models. International Conference on Speech and Computer, 2021 mehr… Volltext (mediaTUM)
- Regularized Forward-Backward Decoder for Attention Models. 2020 mehr…
- CTC-Segmentation of Large Corpora for German End-to-End Speech Recognition. Speech and Computer, Springer International Publishing, 2020 mehr…
- Audio Adversarial Examples for Robust Hybrid CTC/Attention Speech Recognition. Speech and Computer, Springer International Publishing, 2020 mehr…
- Synchronized Forward-Backward Transformer for End-to-End Speech Recognition. Speech and Computer, Springer International Publishing, 2020 mehr…
- Exploring Hybrid CTC/Attention End-to-End Speech Recognition with Gaussian Processes. Proc. 21st International Conference on Speech and Computer SPECOM 2019, Springer, 2019Lecture Notes in Computer Science, pp. 258-269 mehr… Volltext ( DOI )
- Deep Neural Network Quantizers Outperforming Continuous Speech Recognition Systems. Proc. 21st International Conference on Speech and Computer SPECOM 2019, Springer, 2019Lecture Notes in Computer Science, pp. 530-539 mehr… Volltext ( DOI )
Forschungsgebiete
• Deep Learning
• Speech Recognition Speech Recognition
• Speech Enhancement
Publikationen
Studentische Arbeiten
Bei Anfragen zu studentischen Arbeiten reichen Sie bitte folgende Unterlagen mit ein:
• Aktueller Lebenslauf
• Notenauszug
• Bisherige Erfahrungen aus dem Themengebiet
• Starttermin
Offen
Alle ausgeschriebenen Arbeiten finden Sie hier.
Abgeschlossen
2020
• Deep Neural Fenonic Baseform Growing: A Novel Approach to Construct HMM Topologies for Speech Recognition (Masterarbeit-2020)
• A New Hybrid Framework Based on Hidden Markov Models and Deep Neural Network Vector Quantizer for Speech Recognition (Masterarbeit)
• The Implementation of SincNet in the Hybrid Speech Recognition Systems (Forschungspraxis-2020)
• A Method for the Construction of Acoustic Markov Models for Words (Research Internship)
2019
• Stochastic Adaptive Neural Architecture Search for Keyword Spotting (Scientific Seminar)
• Learning Transferable Architectures for Scalable Image Recognition (Scientific Seminar)
2018
• Attention Mechanism for Speech Recognition (Scientifc Seminar)