Michael Meidinger, M.Sc.
Wissenschaftlicher Mitarbeiter
Technische Universität München
TUM School of Computation, Information and Technology
Lehrstuhl für Integrierte Systeme
Arcisstr. 21
80333 München
Tel.: +49.89.289.23871
Fax: +49.89.289.28323
Gebäude: N1 (Theresienstr. 90)
Raum: N2114
Email: michael.meidinger(at)tum.de
Lebenslauf
- Seit 2023: Doktorand am LIS
- 2021 - 2023: M.Sc. Elektro- und Informationstechnik, TU München
- 2018 - 2021: B.Sc. Elektro- und Informationstechnik, TU München
- Tutor/Ferienkurs Digitaltechnik (2019 - 2023), Werkstudent bei ASC Sensors (2020 - 2022)
Angebotene Arbeiten
Falls gerade keine Arbeit ausgeschrieben ist, oder dich ein anderes Thema interessiert, kannst du mir gerne auch initiativ eine Mail schicken.
Laufende Arbeiten
Duckietown - Improved RL-based Vehicle Steering
Beschreibung
At LIS, we try to leverage the Duckietown hardware and software ecosystem to experiment with our reinforcement learning (RL) agents, known as learning classifier tables (LCTs), as part of the Duckiebots' control system (https://www.ce.cit.tum.de/lis/forschung/aktuelle-projekte/duckietown-lab/).
More information on Duckietown can be found at https://www.duckietown.org/.
In previous work, an LCT agent to steer Duckiebots has been developed using only the angular heading error for the system state. In this Bachelor's thesis, the vehicle steering agent should be improved and its functionality extended.
Starting with the existing Python/ROS implementation of the RL agent and our image processing pipeline, multiple system parts should be enhanced. On the environment side, detecting the lateral offset from the center of a lane should be improved for reliability. This will require an analysis of the current problems and some adaptations in the pipeline, possibly some hardware changes.
With more reliable lane offset values, the agent's state observation can also include it, allowing us to move further from the default PID control towards a purely RL-based steering approach. This will involve modifications to the rule population, the reward function, and potentially the learning method. Different configurations are to be implemented and evaluated in terms of their resulting performance and efficiency.
The thesis aims to shift the vehicle steering entirely to the RL agent, ideally reducing the effort for manual parameter tuning while being comparable in driving performance and computation effort.
Voraussetzungen
- Experience with Python and, ideally, ROS
- Basic knowledge of reinforcement learning
- Structured way of working and problem-solving skills
Kontakt
michael.meidinger@tum.de
Betreuer:
Duckietown Bring-Up
Beschreibung
At LIS we want to use the Duckietown hardware and software ecosystem for experimenting with our reinforcement learning based learning classifier tables (LCT) as part of the control system of the Duckiebots: https://www.ce.cit.tum.de/lis/forschung/aktuelle-projekte/duckietown-lab/
More information on Duckietown can be found on https://www.duckietown.org/.
Towards this goal, we need a (followup) working student who is improving the current infrastructure.
Towards this goal, the following three major tasks are necessary:
- Developping an infrastructure to track and visualize measurement data of the platform (e.g. CPU utilization) as well as the executed application.
- During this task also the source and periodicity of already provided data should be analyzed.
- Setting up all Duckiebots incl. all their features and a pipeline to reflash them in case it's needed.
- FPGA-Extension: Searching for a concept, as well as implementing it.
- Final goal: demonstration of data exchange between NVIDIA Jetson and FPGA including protocol to specify the type of transfered data
Kontakt
flo.maurer@tum.de
Betreuer:
Abgeschlossene Arbeiten
Bachelorarbeiten
Kontakt
michael.meidinger@tum.de
Betreuer:
Betreuer:
Kontakt
michael.meidinger@tum.de
Betreuer:
Kontakt
flo.maurer@tum.de
michael.meidinger@tum.de
Betreuer:
Kontakt
flo.maurer@tum.de
michael.meidinger@tum.de
Betreuer:
Masterarbeiten
Betreuer:
Forschungspraxis (Research Internships)
Kontakt
flo.maurer@tum.de
michael.meidinger@tum.de
Betreuer:
Seminare
Kontakt
michael.meidinger@tum.de
Betreuer:
Kontakt
michael.meidinger@tum.de
Betreuer:
Kontakt
michael.meidinger@tum.de
Betreuer:
Kontakt
michael.meidinger@tum.de