ЛП

The Wiener Theory of Causal Linear Prediction Is Not Effective

Holger Boche[†] Volker Pohl[†] H. Vincent Poor^{*}

[†]Technical University of Munich Department of Electrical and Computer Engineering

*Princeton University Department of Electrical an Computer Engineering

62nd IEEE Conference on Decision and Control (CDC) Dec. 13.–15, 2023, Singapore

ПП

Content & Outline of the talk

- ▷ We consider the problem of predicting wss stochastic sequences.
- > There exists well established and beautiful theory due to Kolmogorov, Wiener,
 - "Closed form" solution for the minimum mean square error (MMSE).
 - "Closed form" solution for the optimal (in the MSE sense) linear prediction filter.
- There are many (iterative) algorithms for computing these quantities. However there seems to be no stopping rules.
- Question: Can we effectively compute these "closed form" expressions?
- ▷ Answer: No, not in general.

Classical problem of causal prediction

▷ Let $\mathbf{x} = \{x_n\}_{n \in \mathbb{Z}}$ be a wide-sense stationary (wss) stochastic sequences.

 \triangleright Predict x_0 from past observations of **x** using a linear prediction filter

$$\widehat{x}_0 = H(\mathbf{x}) = \sum_{n=1}^{\infty} h_n x_{-n} = h_1 x_{-1} + h_2 x_{-2} + h_3 x_{-3} + \dots$$

▷ Determine the impulse response $h = \{h_n\}_{n=1}^{\infty}$ of the filter such that the mean square error (MSE)

$$\sigma_{h}^{2} = E[|\widehat{x}_{0} - x_{0}|^{2}] = E[|H(\boldsymbol{x}) - x_{0}|^{2}]$$

is minimized.

▷ The minimum mean square error (MMSE)

$$\sigma_{\min}^2 = \min_{\boldsymbol{h}} \sigma_{\boldsymbol{h}}^2 = \min_{\boldsymbol{h}} \mathrm{E}[|\mathrm{H}(\boldsymbol{x}) - x_0|^2]$$

is an importance performance measure.

Classical and beautiful theory (Kolmogorov, Wiener, ...)

- Every wss stochastic sequence is characterized by its spectral measure μ_{x} .
- One is basically interested in non-deterministic stochastic sequences where the future can not perfectly be predicted from the past.

Theorem: Let \boldsymbol{x} be a wss stochastic sequence with spectral measure $d\mu_{\boldsymbol{x}}(e^{i\theta}) = \varphi_{\boldsymbol{x}}(e^{i\theta}) d\theta + d\mu_s(e^{i\theta})$. Then \boldsymbol{x} is non-deterministic if and only if $\log \varphi_{\boldsymbol{x}} \in L^1(\mathbb{T})$, i.e. if and only if

$$\int_{-\pi}^{\pi} \log \varphi_{\mathbf{x}}(\mathrm{e}^{\mathrm{i}\theta}) \,\mathrm{d}\theta > -\infty. \qquad (\mathsf{Szegö's \ condition})$$

In this case the minimum mean square error is given by

$$\sigma_{\min}^2(\varphi_{\mathbf{x}}) = \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \log \varphi_{\mathbf{x}}(e^{i\theta}) d\theta\right) > 0.$$
 (Kolmogorov's formula)

ПП

Optimal prediction filter

Definition: A non-negative $\varphi \in L^1(\mathbb{T})$ is said to possess a spectral factorization if there exists a $\varphi_+ \in H(\mathbb{D})$ with $\varphi_+(z) \neq 0$ for all $z \in \mathbb{D}$ so that

$$arphi(\mathrm{e}^{\mathrm{i} heta}) = \left|arphi_+(\mathrm{e}^{\mathrm{i} heta})
ight|^2 \qquad ext{for almost all } heta \in [-\pi,\pi) \,.$$

The function φ_+ is called the spectral factor of φ .

Theorem: A function $\varphi \in L^1(\mathbb{T})$ possesses a spectral factorization if and only if φ satisfies Szegö's condition. Then its spectral factor is given by

$$arphi_+(z) = \exp\left(rac{1}{4\pi}\int_{-\pi}^{\pi}\log arphi(\mathrm{e}^{\mathrm{i} heta})rac{\mathrm{e}^{\mathrm{i} heta}+z}{\mathrm{e}^{\mathrm{i} heta}-z}\mathrm{d} heta
ight) \ , \quad z\in\mathbb{D} \ .$$

Theorem: Let **x** be a purely non-deterministic wss stochastic process with spectral density φ . Then the optimal prediction filter for estimating x_0 is given by

$$h_{\text{opt}}(z) = \sum_{n=1}^{\infty} h_n z^n = \frac{\varphi_+(z) - \varphi_+(0)}{\varphi_+(z)} = 1 - \frac{\varphi_+(0)}{\varphi_+(z)}, \qquad |z| < 1.$$
(1)

wherein φ_+ is the spectral factor of φ .

Volker Pohl (TUM) | The Wiener Theory of Causal Linear Prediction Is Not Effective | CDC 2023

< **₽** > < ≣ > < ≣ >

Algorithms for determine the MMSE and the optimal filter

▷ For practical implementation, the optimal prediction filter (1) is approximated by an finite impulese response (FIR) filter of finite degree $N \in \mathbb{N}$

$$\widehat{x}_{0,N} = H_N(\mathbf{x}) = \sum_{n=1}^N h_n^{(N)} x_{-n}$$
 (2)

▷ This yields an MSE

$$\sigma_N^2 = \mathrm{E}[|\widehat{x}_{0,N} - x_0|^2] = \mathrm{E}[|\mathrm{H}_N(\mathbf{x}) - x_0|^2]$$

 \triangleright This MSE is monotonically decreasing in *N* and converges to the MMSE:

$$\sigma_{N_1}^2 \ge \sigma_{N_1}^2 \ge \sigma_{\min}^2$$
 for all $N_2 \le N_1$ and $\lim_{N \to \infty} \sigma_N^2 = \sigma_{\min}^2$.

▷ There exists many different algorithms which determine recursively

the impulse response of the FIR filter $\left\{h_n^{(N)}\right\}_{n=1}^N$ together with the corresponding MSE σ_N^2

Example: Durbin–Levinson algorithm

 \triangleright How to choose the degree *N* of the FIR approximation?

Problem 1: Existence of a specific stopping rule

Given an arbitrary precision $M \in \mathbb{N}$, choose $N \in \mathbb{N}$ such that

$$\sigma_N^2 - \sigma_{\min}^2(\varphi_{\boldsymbol{x}}) \big| < 2^{-M}$$

Problem 1: Existence of a specific Turing machine

Given a spectral density φ of a wss stochastic sequence \mathbf{x} . Is it possible to find a specific Turing machine TM_{φ} with input $M \in \mathbb{N}$ and and output $N_0 = \mathrm{TM}_{\varphi}(M)$ such that

$$N \ge N_0$$
 implies $\left|\sigma_N^2 - \sigma_{\min}^2(\varphi_{m{x}})\right| < 2^{-M}$?

Problem 2: Existence of a universal algebraic stopping rule

Problem 2: Existence of a universal Turing machine

Given a set \mathscr{M}_D of spectral densities. Is it possible to find a universal Turing machine $\mathrm{TM}_{\mathscr{M}_D}$ with two inputs $\varphi \in \mathscr{M}_D$ and $M \in \mathbb{N}$ and and output $N_0 = \mathrm{TM}_{\varphi}(\varphi, M)$ such that

 $N \ge N_0$ implies $\left|\sigma_N^2 - \sigma_{\min}^2(\varphi_{\mathbf{x}})\right| < 2^{-M}?$

Computable Analysis – Computable numbers and functions

Definition (Computable Number) A number $x \in \mathbb{R}$ is said to be *computable* if there exists a Turing machine TM with input $M \in \mathbb{N}$ and output $\xi(M) = TM(M) \in \mathbb{Q}$, such that

$$|x - \xi(M)| \le 2^{-M}$$
, for all $M \in \mathbb{N}$. (3)

The set of all computable real numbers is denoted by \mathbb{R}_c .

Definition (Computable Function)

A function $\varphi : \mathbb{T} \to \mathbb{R}$ is said to be *computable* if there exists a computable sequence of real trigonometric polynomials $\{p_N\}_{N \in \mathbb{N}}$ that effectively and uniformly converges to *f* on \mathbb{T} , i.e. there exists a Turing machine $\mathrm{TM} : \mathbb{N} \to \mathbb{N}$ such that

 $N \geq \mathrm{TM}(M)$ implies $|arphi(\zeta) - p_N(\zeta)| \leq 2^{-M}$ for all $\zeta \in \mathbb{T}$.

ПП

Set of stochastic processes

We consider stochastic processes with spectral densities which are computable continuous functions on the unit circle $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ with first derivatives φ' that are also computable continuous functions on \mathbb{T} and that satisfy Szegö's condition, i.e.

$$\mathscr{M}_{\mathrm{D}} = \left\{ \pmb{arphi} \in \mathscr{C}_{\mathrm{c}}(\mathbb{T}) : \pmb{arphi}' \in \mathscr{C}_{\mathrm{c}}(\mathbb{T}) ext{ and } \log \pmb{arphi} \in \mathsf{L}^1(\mathbb{T})
ight\} \,.$$

Generally, the MMSE is not a computable number

Theorem 1: There exist spectral densities $\varphi \in \mathscr{M}_D$ such that the MMSE $\sigma^2_{\min}(\varphi)$ is not a computable number.

Remark: In fact, to every $s \in \mathbb{R}$, s > 0 which is not computable, there exists a spectral density $\varphi_s \in \mathscr{M}_D$ such that $\sigma_{\min}^2(\varphi_s) = s \notin \mathbb{R}_c$

No specific algorithmic stopping criterion for the MMSE

Theorem 2: For every spectral density $\varphi \in \mathscr{M}_D$ from Theorem 1, and for every monotonically decreasing approximation sequence $\{\sigma_N^2\}_{N \in \mathbb{N}}$ with

$$\lim_{N\to\infty}\sigma_N^2=\sigma_{\min}^2(\varphi)$$

there exists no specific Turing machine TM_{φ} with input $M \in \mathbb{N}$ that is able to compute a stopping index $N_0 = TM_{\varphi}(M)$ such that

$$N \geq N_0$$
 implies $\left|\sigma_N^2 - \sigma_{\min}^2(\varphi) \right| < 2^{-M}$.

Corollary: Problem 1 (existence of a specific stopping rule) is generally not solvabel.

No universal stopping criterion for the MMSE

- In practice, we look for a universal stopping criterion which is able to determine the stopping index for all spectral densities in a certain set, e.g. for all $\varphi \in \mathcal{M}_D$.
- Since there exists no specific stopping criterion for some $\varphi \in \mathcal{M}_D$, it is clear that there exists no universal stopping criterion for \mathcal{M}_D .

Theorem 3: There exists no universal Turing machine TM with two inputs $\varphi \in \mathscr{M}_D$ and $M \in \mathbb{N}$ and with output $N_0 = \mathrm{TM}(\varphi, M) \in \mathbb{N}$ such that for all $\varphi \in \mathscr{M}_D$ and for every monotonically decreasing approximation sequence $\{\sigma_N^2\}_{N \in \mathbb{N}}$ with

$$\lim_{N
ightarrow\infty}\sigma_N^2=\sigma_{\min}^2(arphi)$$

one has

$$N \geq N_0 = \mathrm{TM}(arphi, M) \qquad ext{implies} \qquad \left|\sigma_N^2(arphi) - \sigma_{\min}^2(arphi)
ight| < 2^{-M}.$$

Corollary: Problem 2 (existence of a universal stopping rule for \mathcal{M}_D) is generally not solvabel.

Volker Pohl (TUM) | The Wiener Theory of Causal Linear Prediction Is Not Effective | CDC 2023

The optimal Wiener prediction filter is not effectively computable

- \triangleright So there is no stopping criterion for the MMSE.
- ▷ It might still be possible to compute the prediction optimal filter.

Theorem 4: Let $\varphi \in \mathcal{M}_D$ be a spectral density as in Theorem 1, and let $\{h_n\}_{n=1}^{\infty}$ be the impulse response of the corresponding optimal prediction filter. Then

- h_1 is not a computable number, i.e. there is no stopping criterion for any sequence which approximates h_1 .
- there exists *no* computable sequence $\{h^{(N)}\}_{N \in \mathbb{N}} = \{h_n^{(N)} : n = 1, 2, ..., N\}_{N \in \mathbb{N}}$ of FIR approximations that effectively converges to the optimal impulse response.

Summary, Outlook

- \triangleright We showed that for spectral densities in \mathcal{M}_D the MMSE and the optimal prediction filter is not effectively computable, in general, i.e.
 - $\mathcal{M}_{\rm D}$ contains spectral density φ so that no specific stopping rule for the computation of $\sigma_{\rm min}^2(\varphi)$ exists.
 - $-M_D$ contains spectral densities for which the MMSE is effectively computable -> specific stopping criterion.
 - $-\,$ there is no universal stopping rule for $\mathscr{M}_D.$

Further Problems:

- $\,\triangleright\,$ Find subsets of $\mathscr{M}\subset\mathscr{M}_D$ such that
 - for every $\varphi \in \mathscr{M}$ the MMSE $\sigma_{\min}^2(\varphi)$ is computable -> there exists at least specific stopping criteria.
 - $-\,$ there exists a universal stopping rule for ${\mathscr M}$