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Decoding
Shannons Channel Coding:

m
Alice

-Encoder Noisy Channel W n
Decoder

Bob
- m̂

xn ∈ X n yn ∈ Yn
- -

• Alice has to transmit a message m ∈ M = {1, 2, . . . ,M} to Bob
• Alice uses a block code X n = {0, 1, . . . , q − 1}n

• W = {W (y |x) : x ∈ X , y ∈ Y} is a stochastic matrix.
• The probability for a sequence y ∈ Yn to be received if xn ∈ X n:

W n(yn|xn) =
n∏

t=1

W (yt |xt)

• Bob receives a word in Yn.
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Identification

i
Alice

- Enc Noisy Channel W n Dec
Bob

- Is j sent or not
xn ∈ X n yn ∈ Yn

- -

• Alice has to transmit a identity i ∈ M = {1, 2, . . . ,M}
• Alice sends xn ∈ X n = {0, 1, . . . , q − 1}n

• W = {W (y |x) : x ∈ X , y ∈ Y} is a stochastic matrix.
• The probability for a sequence y ∈ Yn to be received if xn ∈ X n:

W n(yn|xn) =
n∏

t=1

W (yt |xt)

• Bob receives a word in Yn.
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Deterministic and Randomized

Two types of identification:

• Randomized. Up to 22Ctr n
identities.

• Deterministic. Up to 2CIDn for DMC, but the capacity is higher than for transmission.
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Definitions

Definition
A (M, n) DI code for a DMC W under input constraint A is defined as a system (U ,D) that consists of a
codebook U = {ui}i∈[M], U ⊂ X n, such that

ϕn(ui) ≤ A, for all i ∈ [M], (1)

and a collection of decoding regions D = {Di}i∈[M], Di ⊂ Yn. The error probabilities are given by

Pe,1(i) = W n(Dc
i |ui) (missed-identification error), (2)

Pe,2(i, j) = W n(Dj |ui) (false identification error). (3)

A (M, n, λ1, λ2) DI code satisfies

Pe,1(i) ≤ λ1, (4)
Pe,2(i, j) ≤ λ2, (5)

for all i, j ∈ [M], i ̸= j .
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More Definitions

A rate R is called achievable if for any λ1, λ2 > 0 and sufficiently large n there exists a (M, n, λ1, λ2) DI code
with M ≥ 2Rn. The capacity is defined as the supremum of all achievable rates and denoted as CDI(W).

We consider cost function of the following form.

ϕn(xn) =
1
n

n∑
t=1

ϕ(xt). (6)

The type P̂xn of a given sequence xn is defined as the empirical distribution P̂xn(a) = N(a|xn)/n for all
a ∈ X , where N(a|xn) is the number of occurrences of the symbol a in the sequence xn. For a given
distribution pX type class T (pX ) is defined as a set of all sequences xn ∈ X n such that for every a ∈ X an
equality P̂xn(a) = pX (a) holds.
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Known results

In paper 1 the authors prove the following Theorem.

Theorem
For reduced DMC (all rows of matrix W are different) W its identification capacity equals

CDI(W) = max
pX :E{ϕ(X )}≤A

H(X ).

If there are no constraints then
CDI(W) = log2 |X |.

Theorem is proved with random coding method, so it doesn’t provide efficient method of construction or
encoding.

1Mohammad J. Salariseddigh; Uzi Pereg; Holger Boche; Christian Deppe "Deterministic Identification Over Channels With Power Constraints", 2021
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Key Lemma

The proof is based on the following lemma.

Lemma
Let X be a random variable with a distribution pX (x), x ∈ X , and R be a positive number such that
R < H(X ). Then for sufficiently small ε ∈ (0, 1) and sufficiently large n, there exists a codebook
U∗ = {ui , i ∈ M}, which consists of |M| sequences in X n, such that the following holds:
1) All the codewords belong to the type class T (pX ).
2) The distance between any two codewords is at least nε.
3) The codebook size is at least 1

2 · 2nR.
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Construction

Theorem
For reduced DMC W there exists a sequence of DI codes (Mi = 2niR, ni , λ1,i , λ2,i) such that λ1,i , λ2,i → 0,
ni → ∞, R → CDI(W) = max

pX :E{ϕ(X )}≤A
H(X ). The construction complexity and encoding complexity are both

polynomial in codelength ni .
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Sketch of the proof

We construct a code of rate R < H(X ). Concatenated construction:

• Inner code of rate R1, R > R1, length n1, alphabet q1 = q, and Hamming distance d1 ≥ ε1n1.
• Outer code is a Reed-Solomon code of rate R2 ≥ (1 − ε2), length n2 = q2, alphabet size q2 ∼ qR1n1

1 ,
and Hamming distance d2 ≥ ε2n2.

• Final code has rate ≥ R1(1 − ε2), length n = n1n2, alphabet size q, and Hamming distance
d ≥ ε1 · ε2 · n.

Complexity of constructions is O(qn1
1 · n1) = O(M1/R1

1 · n1) = O(n1/R
2 · n1) operations and O(qn1) memory.

Complexity of encoding is also polynomial.
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Simulations for DMC

• We use our Construction to obtain DI codes of finite length for the binary symmetric channel (BSC)
without power constraints.

• As inner codes we take either all possible codewords, all possible codewords of even weight, Hamming
code, or extended Hamming code. As outer codes we use Reed-Solomon codes with field size
q2 = M1.

• We calculate the error ε for (n,M, ε, ε) identification code, i.e. we have the same constraint for the
errors of the first and the second type. As decoding regions for each identity i we use balls of radius r
with a center at corresponding codeword ui . The radius is chosen for each length to minimize the error.

• We also provide a transmission error for the same codes from Construction, and converse bound for
transmission error2

• At last, we compute identification and transmission errors for the linear codes with the best known
distance.3

2Yury Polyanskiy; H. Vincent Poor; Sergio Verdu "Channel Coding Rate in the Finite Blocklength Regime"
3M. Grassl, “Bounds on the minimum distance of linear codes and quantum codes,” Online available at http://www.codetables.de
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Simulation results 1

Figure: Identification and transmission errors for the codes of length up to 256
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Simulation results 2

Figure: Identification and transmission errors for the codes of length up to 256
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Hardware simulations

We investigate BSC channels by using BPSK modulation for the transmission of codewords ui via Gaussian
channels at different signal-to-noise ratio (SNR) levels for a fixed transmit signal power. Thus, we increase
the AWGN power in 1 dB steps after 1000 measurements.

In our experiments we consider two cases. “Scenario 1” consists of a receiver interested in the transmitter’s
identity (j = i), which is used in the DI verification process, VDI. Here we are interested in evaluating the
missed-identification errors, Pe,1(i), caused by transmission errors.

“Scenario 2” contemplates the case when the receiver is interested in a different identity, j , than the
transmitter’s one, i . We investigate the scenario when the codewords corresponding to identities i and j are
located at the minimum possible distance between them, i.e., the decoding region radius r . Here we focus
on the analysis of the false identification errors, Pe,2(i, j) that occur for different SNR levels and BER.
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Table: Key parameters of the four experiments we conducted.

Element Parameter Exp. 1 Exp. 2 Exp. 3 Exp. 4

Inner
Code

Code SPC SPC EH SPC
length n1 8 8 8 8
dimension k1 7 7 4 7
distance d1 2 2 4 2

Outer
Code

Code RS RS RS RS
alphabet q2 128 128 16 128
length n2 32 16 16 32
dimension k2 19 10 3 4
distance d2 14 7 14 29

Concatenated
Code

length n 256 128 128 256
dimension k 133 70 12 28
distance d 28 14 56 58

Verifier radius r 19 9 32 42
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Figure: Probability of accept responses after DI verification at the receiver.
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Figure: Errors of the first kind, Pe,1(i) as in Eq. (4), caused by the channel transmission, measured using the bit error rate for different SNR levels.
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Conclusion and future work

• The construction of identification codes with optimal capacity was proposed. The complexity of
construction and encoding are polynomial in length n.

• For finite lengths deterministic identification codes were constructed. For the binary symmetric channel
we confirm that the identification codes achieve rate bigger than the rate of transmission codes.
Hardware simulation verifies these results.

Future directions

• Finite lengths identification codes for other channel, for example, binary asymmetric channel.
• Construction of identification codes for AWGN and Fading channels. (We have some results available

at arxiv.)
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Thank you for your attention!
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