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What is Common Randomness (CR)?

• The parties aim to agree on a common random variable with high
probability
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CR Generation

• Introduced by Ahlswede and Csiszár1

• Ahlswede and Csiszár established the CR capacity of rate-limited perfect
channels as well as discrete memroyless channels1

1R. Ahlswede and I. Csiszár, "Common randomness in information theory and cryptography. II. CR capacity," IEEE Transactions on Information Theory,
vol. 44, no. 1, pp. 225-240, 1998.
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Applications of CR Generation

CR

Secret Key Generation

Random Coding over Ar-
bitrarily Varying Channels

Identification

Modular Coding Scheme
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CR Generation with One-Way Communication
Source Type Channel Type Known Result

finite Gaussian
Single-letter CR ca-
pacity Formula1

finite Slow Fading with ar-
bitrary state distribu-
tion

Single-letter outage
CR capacity For-
mula2

finite Arbitrary
General For-
mula/Bounds on
the Uniform CR Ca-
pacity3/ϵ-Uniform
CR Capacity4.

1R. Ezzine, W. Labidi, H. Boche and C. Deppe, "Common Randomness Generation and Identification over Gaussian Channels," GLOBECOM 2020 - 2020
IEEE Global Communications Conference, Taipei, Taiwan, 2020.

2R. Ezzine, M. Wiese, C. Deppe and H. Boche, "Common Randomness Generation over Slow Fading Channels," 2021 IEEE International Symposium on
Information Theory (ISIT), Melbourne, Australia, 2021.

3R. Ezzine, M. Wiese, C. Deppe and H. Boche, "A General Formula for Uniform Common Randomness Capacity," 2022 IEEE Information Theory
Workshop (ITW), Mumbai, India, 2022.

4R. Ezzine, M. Wiese, C. Deppe and H. Boche, "A Lower and Upper Bound on the Epsilon-Uniform Common Randomness Capacity," 2023 IEEE
International Symposium on Information Theory (ISIT), Taipei, Taiwan, 2023.
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CR Generation from Compound Sources

• Compound source: the source derives from a defined uncertainty set,
and the latter remains unchanged during the observation time scale

• The concept of generating shared randomness from compound sources
was introduced solely in the context of secret key generation123

• No secrecy requirements are imposed in our work

1H. Boche and R. F. Wyrembelski, "Secret key generation using compound sources - optimal key-rates and communication costs," in 9th International ITG
Conference on Systems, Communication and Coding, pp. 1-6, 2013.

2N. Tavangaran, S. Baur, A. Grigorescu and H. Boche, "Compound Biometric Authentication Systems with Strong Secrecy," in 11th International ITG
Conference on Systems, Communications and Coding, pp. 1-5, 2017.

3N. Tavangaran, H. Boche and R. F. Schaefer, Secret-Key Generation Using Compound Sources and One-Way Public Communication," IEEE
Transactions on Information Forensics and Security, vol. 12, no. 1, pp. 227-241, 2017.
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System Model

{PXYs}s∈S

Noiseless Channel

Terminal A Terminal B

K = Φ(Xn)
Ls = Ψ(Yn

s , f(Xn))

Xn Yn
s

f(Xn) f(Xn)

• {PXYs
}s∈S is a compound discrete memoryless multiple source (CDMMS)

• S : Finite set of source states

• both terminals know the set of source states as well as their statistics with
probability distributions {PXYs

}s∈S but they don’t know the actual state
s ∈ S
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System Model

{PXYs}s∈S

Noiseless Channel

Terminal A Terminal B

K = Φ(Xn)
Ls = Ψ(Yn

s , f(Xn))

Xn Yn
s

f(Xn) f(Xn)

• The CDMMS emits i.i.d. samples of (X, Ys)

• Communication over a noiseless channel with capacity R > 0

No other resources are available!
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System Model

{PXYs}s∈S

Noiseless Channel

Terminal A Terminal B

K = Φ(Xn)
Ls = Ψ(Yn

s , f(Xn))

Xn Yn
s

f(Xn) f(Xn)

• (K,Ls) is called permissible pair

• Question: How much CR can we generate in one-way communication
such that P [K ̸= Ls] is small for every s ∈ S ?
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Achievable Compound CR Rate

A number H is called an achievable compound CR rate if for every α, δ > 0 and
for sufficiently large n there exists a permissible pair of random variables
(K,Ls) for every s ∈ S such that

∀s ∈ S : P [K ̸= Ls] ⩽ α

and
1
n
H(K) > H− δ

Compound CR Capacity
The compound CR capacity CCCR(R) is the maximum achievable compound
CR rate

Common Randomness Generation from Finite Compound Sources 9
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Lower Bound on the Compound CR Capacity

Theorem
The compound CR capacity CCCR(R) satisfies

CCCR(R) ⩾ max
U

∀s∈S:U◦−X◦−Ys

I(U;X)−min
s∈S

I(U;Ys)⩽R

I(U;X)

• The alphabet U of U is subject to the cardinality bound

|U| ⩽ |X|+ |S|− 1
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Upper Bound on the Compound CR Capacity

Theorem
The compound CR capacity CCCR(R) satisfies

CCCR(R) ⩽ min
s∈S

max
Us

Us ◦−X◦−Ys

I(Us;X)−I(Us;Ys)⩽R

I(Us;X)

• For every s ∈ S, the alphabet Us of Us is subject to the cardinality bound

|Us| ⩽ |X|

Common Randomness Generation from Finite Compound Sources 11



Facts

• CCCR(R) ⩽ H(X)

• For R ⩾ max
s∈S

H(X|Ys), the bounds are both equal to H(X)

• If there exists s ′ ∈ S such that for every s ∈ S, X ◦− Ys ◦− Ys′ forms a
Markov chain, then, the bounds are equal

• For R < max
s∈S

H(X|Ys),

max
U

∀s∈S:U◦−X◦−Ys

I(U;X)−min
s∈S

I(U;Ys)⩽R

I(U;X) ⩾ R

The lower-bound is not tight. Example: Consider S = {s0} and X = Ys0

then for all R > 0

max
U

∀s∈S:U◦−X◦−Ys

I(U;X)−min
s∈S

I(U;Ys)⩽R

I(U;X) = H(X)
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Proof Sketch of the Lower Bound

Extend the scheme provided by Ahslwede and Csiszár 1 to compound sources:
• Generation of nearly uniform random variables K and Ls for every s ∈ S, s.t

for sufficiently large n such that for every α > 0

∀s ∈ S : P [K ̸= Ls] ⩽ α ✓

1
n
H(K) > I(U;X) − δ ✓

for any U satisfying ∀s ∈ S : U ◦− X ◦− Ys and I(U;X) − min
s∈S

I(U; Ys) < R

1R. Ahlswede and I. Csiszár, "Common randomness in information theory and cryptography. II. CR capacity," in IEEE Transactions on Information Theory,
vol. 44, no. 1, pp. 225-240, Jan. 1998.
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Proof Sketch of the Lower Bound

1 Let s ∈ S be fixed arbitrarily. Let (xn,yn
s ) be any realization of (Xn, Yn

s )

2 Consider a set of sequences Ui,j, i = 1 . . .N1, j = 1 . . .N2, uniformly
distributed on Tn

σ (PU) and let ui,j some realization of
Ui,j, i = 1 . . .N1, j = 1 . . .N2,

• Tn
σ (PU) : Set of σ-strongly typical sequences with respect to PU(·)

3 xn
Φ−→ ui,j : (ui,j, xn) ∈ Tn

σ (PUX)

• Tn
σ (PUX) : Set of σ-strongly typical sequences with respect to PUX(·)

4 (yn
s , i) Ψ−→ ui,j̃ :
• The index i is sent over the noiseless channel

• yn
s

Ei−→ j̃ if there exists s⋆ ∈ S such that (ui,j̃,y
n
s ) ∈ Tn

σ (PUYs⋆
)

• Tn
σ (PUYs⋆

) : Set of σ-strongly typical sequences with respect to PUYs⋆
(·)

No state estimation is required at Terminal B!
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Proof Sketch of the Lower Bound

• Proof of the cardinality bound |U| ⩽ |X|+ |S|− 1 based on a direct
application of the support lemma

Support Lemma 1

Let P(X) be the family of all probability distributions on the set X, and let fj,
j = 1, . . . ,k be real-valued continuous functions on P(X). Then to any
probability measure µ on the Borel σ-algebra of P(X) there exist k elements Pi

of P(X) and non-negative numbers α1, . . . ,αk with
∑k

i=1 αi = 1 such that for
every j = 1, . . . ,k: ∫

P(X)

fj(P)µ(dP) =

k∑
i=1

αifj(Pi)

1 I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems," 2nd ed. Cambridge University Press, 2011.
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Proof Sketch of the Upper Bound

We prove that for every s ∈ S : H(K)
n

⩽ max
Us

Us ◦−X◦−Ys

I(Us;X)−I(Us;Ys)⩽R+ζ(n)

I(Us;X), for

ζ(n) > 0 where lim
n→∞ζ(n) can be made arbitrarily small ✓

1 Consider an arbitrary s ∈ S and define J to be uniformly distributed on
{1, . . . ,n} and Us = KX1 . . .XJ−1Ys,J+1 . . .Ys,nJ, where

• Us ◦− XJ ◦− Ys,J

• The joint distribution of XJ and Ys,J is equal to PXYs

2 Show that H(K)
n

⩽ I(Us;XJ)

3 Show that H(K|Yn
s )

n
= I(Us;XJ) − I(Us; Ys,J)

4 Show that H(K|Yn
s )

n
⩽ R+ ζ(n)

• Proof of the cardinality bound |Us| ⩽ |X| is based on a direct application of
the support lemma.
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the support lemma.
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Proof Sketch of the Upper Bound

We prove that for every s ∈ S : H(K)
n

⩽ max
Us

Us ◦−X◦−Ys

I(Us;X)−I(Us;Ys)⩽R+ζ(n)

I(Us;X), for

ζ(n) > 0 where lim
n→∞ζ(n) can be made arbitrarily small ✓

1 Consider an arbitrary s ∈ S and define J to be uniformly distributed on
{1, . . . ,n} and Us = KX1 . . .XJ−1Ys,J+1 . . .Ys,nJ, where

• Us ◦− XJ ◦− Ys,J

• The joint distribution of XJ and Ys,J is equal to PXYs

2 Show that H(K)
n

⩽ I(Us;XJ)

3 Show that H(K|Yn
s )

n
= I(Us;XJ) − I(Us; Ys,J)

4 Show that H(K|Yn
s )

n
⩽ R+ ζ(n)

• Proof of the cardinality bound |Us| ⩽ |X| is based on a direct application of
the support lemma.

Common Randomness Generation from Finite Compound Sources 16



Outline

1 Overview

2 System Model for CR Generation from Finite Compound Sources

3 Single-Letter Bounds on the Compound CR Capacity

4 Proof Sketch of the Bounds

5 Conclusions

Common Randomness Generation from Finite Compound Sources 17



Conclusions

, We established a single-letter lower and upper bound on the compound
CR capacity for our proposed model

, We considered two special scenarios where the established bounds
coincide

, Open Problem: Derivation of a single-letter formula of the compound CR
capacity for our system model
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