

Existentially Unforgeable Quantum Physical Unclonable Functions

Soham Ghosh†

soham.ghosh@tum.de

Joint work with

Vladlen Galetsky[†], Pol Julià Farré‡, Christian Deppe[‡], Roberto Ferrara[†] and Holger Boche[†]

School of Computation, Information and Technology, Technical University of Munich, Germany

‡ Institute for Communications Technology, Technical University of Braunschweig, Germany

Quantum Physical Unclonable Functions (QPUFs)

[Arapinis,Delavar,Doosti,Kashefi 2021]

 $U \sim \mu(D)$, where $\mu(D) \equiv$ Haar measure defined on the D-dimensional Unitary group.

Challenge-Response Database: {(ρ *i in*, ρ*ⁱ out*)}.

Existential Unforgeability

Definition (Existential Unforgeability)

U is existentially unforgeable if \forall possible input state $\rho \notin Q_A$, the probability of predicting the correct response state $U \rho U^\dagger$ by the Adversary ${\cal A}$ is negligible.

Existential Unforgeability

Definition (Existential Unforgeability)

U is existentially unforgeable if \forall possible input state $\rho \notin Q_A$, the probability of predicting the correct response state $U \rho U^\dagger$ by the Adversary ${\cal A}$ is negligible.

Theorem (Arapinis,Delavar,Doosti,Kashefi 2021) *No Unitary QPUF is Existentially Unforgeable!*

Failure of Unitary QPUFs

Universal Quantum Emulator [Marvian, Llyod 2016]

 $UQE: Q \mapsto E_{II}^Q$ *U* such that ∀σ ∈ *S^Q* ⊆ H,

> $U \rho U^\dagger \approx E_U^Q$ *U* ρ*E Q*† *U* .

Soham Ghosh - Existentially Unforgeable Quantum Physical Unclonable Functions **5 5**

Failure of Unitary QPUFs

Since $\textit{Q}_{\cal A} \subseteq \textit{S}_{\textit{Q}_{\cal A}},$ $\exists \rho \notin \textit{Q}_{\cal A}$ such that

 $E_{II}^{Q_A}$ $U^Q{}_{\!\!\mu} \rho E^{Q_{\!A}\dagger}_{U} \approx U\rho U^{\dagger}$

No Existential Unforgeability!

Non-unitary construction

Authentication Protocol:

- Verifier creates state *U* |*i*⟩ and sends to prover and stores the public classical value *i*.
- Prover sends back the received state upon verification and verifier makes QPUF measurement.
- Pass if $i = j$, fail otherwise.

New Existential Unforgeability

Definition (New Existential Unforgeability)

M_U is existentially unforgeable if \forall possible classical values $i \notin Q_A$, the probability of predicting the correct response state $U|i\rangle$ by the Adversary is negligible.

span $\{U | k \rangle\}$ is a measure zero set \implies Existential Unforgeability!

$$
E[P_{\text{hack}}] \leq \frac{1}{D-\dim(Q_{\mathcal{A}})}
$$

Soham Ghosh - Existentially Unforgeable Quantum Physical Unclonable Functions 8

Implementations

Known methods have exponential complexity [Quintino et. al. 2019].

Implementation based on Quantum Phase Estimation

Check
$$
|k - k'| \leq \Delta
$$
?

∆- is a chosen decision boundary and

$$
CU \equiv \sum_{i \in \mathbb{Z}_D} |i\rangle \langle i| \otimes U^i.
$$

Implementation based on Quantum Phase Estimation

Check $|k - k'| \leq \Delta$?

∆- is a chosen decision boundary and

$$
CU \equiv \sum_{i \in \mathbb{Z}_D} |i\rangle \langle i| \otimes U^i.
$$

Probability of getting $|k - k'| \leq \Delta$ for honest prover:

$$
Pr[|k - k'| \leq \Delta] > \left(1 - \sqrt{1 - f(\Delta)}\right)^2 , \qquad (1)
$$

where

$$
f(\Delta)=\left(1-\frac{2}{\pi^2\left(\sqrt{\Delta}+\frac{1}{2}\right)}\right)\cdot\left(1-\frac{2}{\pi^2(\Delta-\frac{1}{2})}\right).
$$

Simulations

Figure: (Left) m_0 and m_1 represent measurement outcomes at generation and verification respectively. 6 ancilla, 6 target, 10³ shots on IBM aer-simulator backend. (Right) Simulation results (above) compared with analytical bound (below).

Mechanics of Quantum Phase Estimation

Spectral decomposition of *U*

$$
U=\sum_{i\in\mathbb{Z}_D}e^{i2\pi\frac{\phi_i}{d}}\ket{\phi_i}\bra{\phi_i},\quad \phi_i\in[0,d[.
$$

Mechanics of Quantum Phase Estimation

Spectral decomposition of *U*

$$
U=\sum_{i\in\mathbb{Z}_D}e^{i2\pi\frac{\phi_i}{d}}\ket{\phi_i}\bra{\phi_i},\quad \phi_i\in[0,d[.
$$

QPE quantum instrument:

$$
\Lambda_{U}^{QPE}(\rho)\equiv\sum_{k\in\mathbb{Z}_{d}}\left|k\right\rangle \left\langle k\right|\otimes U_{k}\rho U_{k}^{\dagger}.
$$

TIM

Mechanics of Quantum Phase Estimation

Spectral decomposition of *U*

$$
U=\sum_{i\in\mathbb{Z}_D}e^{i2\pi\frac{\phi_i}{d}}\ket{\phi_i}\bra{\phi_i},\quad \phi_i\in[0,d[.
$$

QPE quantum instrument:

$$
\Lambda_{U}^{QPE}(\rho)\equiv\sum_{k\in\mathbb{Z}_{d}}\left|k\right\rangle \left\langle k\right|\otimes U_{k}\rho U_{k}^{\dagger}.
$$

The explicit form of the Kraus operators can be calculated as:

$$
U_k = \sum_{j\in\mathbb{Z}_D} \frac{e^{i\pi(\phi_j-k)}}{e^{i\frac{\pi}{d}(\phi_j-k)}} \frac{\sin(\pi(\phi_j-k))}{d\sin\left(\frac{\pi(\phi_j-k)}{d}\right)} \ket{\phi_j}\bra{\phi_j},
$$

TIN

Mechanics of Quantum Phase Estimation

Spectral decomposition of *U*

$$
U=\sum_{i\in\mathbb{Z}_D}e^{i2\pi\frac{\phi_i}{d}}\ket{\phi_i}\bra{\phi_i},\quad \phi_i\in[0,d[.
$$

QPE quantum instrument:

$$
\Lambda_{U}^{QPE}(\rho)\equiv\sum_{k\in\mathbb{Z}_{d}}\left|k\right\rangle \left\langle k\right|\otimes U_{k}\rho U_{k}^{\dagger}.
$$

The explicit form of the Kraus operators can be calculated as:

$$
U_k = \sum_{j\in\mathbb{Z}_D} \frac{e^{i\pi(\phi_j-k)}}{e^{i\frac{\pi}{d}(\phi_j-k)}} \frac{\sin(\pi(\phi_j-k))}{d\sin\left(\frac{\pi(\phi_j-k)}{d}\right)} \ket{\phi_j}\bra{\phi_j},
$$

with POVM elements,

$$
M_k\coloneqq U_k^\dagger U_k=|U_k|=\sum_{j\in\mathbb{Z}_D}\frac{\sin^2(\pi(\phi_j-k))}{d^2\sin^2(\frac{\pi(\phi_j-k)}{d})}\ket{\phi_j}\bra{\phi_j}.
$$

Mechanics of Quantum Phase Estimation

$$
\lim_{d\to \inf} \Big|\frac{\sin(\pi(\phi_j - k))}{d\sin(\pi(\frac{\phi_j - k}{d}))}\Big|^2 = \Big|\frac{\sin(\pi(\phi_j - k))}{\pi(\phi_j - k)}\Big|^2
$$

 $\mathcal{M}_k \approx \sum_j |\phi_j\rangle\,\langle\phi_j|$, such that $\forall j, \exists\Delta$ such that $|\phi_j - k| \leq \Delta.$ The POVMs *M^k* approximate a von-Neumann Measurement on the eigenbasis of *U*.

Mechanics of Quantum Phase Estimation

$$
\lim_{d\to \inf} \Big|\frac{\sin(\pi(\phi_j - k))}{d\sin(\pi(\frac{\phi_j - k}{d}))}\Big|^2 = \Big|\frac{\sin(\pi(\phi_j - k))}{\pi(\phi_j - k)}\Big|^2
$$

 $\mathcal{M}_k \approx \sum_j |\phi_j\rangle\,\langle\phi_j|$, such that $\forall j, \exists\Delta$ such that $|\phi_j - k| \leq \Delta.$ The POVMs *M^k* approximate a von-Neumann Measurement on the eigenbasis of *U*.

Problem: Implementation of $CU^{2^{n-1}}$ has exponential gate cost complexity.

Soham Ghosh - Existentially Unforgeable Quantum Physical Unclonable Functions 13

• Defined PUFs and motivated quantum advantage for studying QPUFs.

- Defined PUFs and motivated quantum advantage for studying QPUFs.
- Defined Existential Unforgeability, explained failure of Unitary QPUFs and motivated the search for non-unitary constructions.

- Defined PUFs and motivated quantum advantage for studying QPUFs.
- Defined Existential Unforgeability, explained failure of Unitary QPUFs and motivated the search for non-unitary constructions.
- Provided explicit non-unitary constructions.

- Defined PUFs and motivated quantum advantage for studying QPUFs.
- Defined Existential Unforgeability, explained failure of Unitary QPUFs and motivated the search for non-unitary constructions.
- Provided explicit non-unitary constructions.
- Explained the short-comings of the constructions and defined some open problems.

Thank you.