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PUFs

Definition

PUF, is a physical object whose operation cannot be
reproduced ("cloned") in physical way (by making
another system using the same technology), that for a
given Input and conditions (challenge), provides a
physically defined "digital fingerprint" output
(response), that serves as a unique identifier.l?!
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[1] Gao, et al. "Physical unclonable functions." Nature Electronics 3.2 (2020): 81-91.
[2] Wikipedia.org : "Physical unclonable functions."
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A PUF is a physical entity embodied in a physical structure.
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[1] Ignatenko, et al. "Biometric security from an information-theoretical perspective." FTCIT 7.2-3 (2012): 135-316
[2] Baur, “Secret Key Generation with Perfect Secrecy...” PhD diss., T. U. Minchen, 2021. 2
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Results
Simple Model

Pr(S #5) <e Theorem 1

1

gl (SAM) =0 The SK capacity is given by

1 1 Csx = max I (T}

—H(S) = —log|S| sk = gar LT3 )

n n

1 V" is the quantum system observed at the 2nd terminal
Elog S| > K —e for the classical output X" observed at the 1st terminal.

[1] Nilesh, K., et al. "Information Theoretic Analysis of a Quantum PUF." ISIT (2024) 5
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1 V" is the quantum system observed at the 2nd terminal
Elog S| > K —e for the classical output X" observed at the 1st terminal.



Proof Theorem 1

Converse

nK < H(S)
= I(S;8) + H(S | S)
b .
< I(S;S) + 1+ nelog|S|
< I(S; MY™) + 1+ nelog|S]
d
<I(S;M)+I1(S5;Y"| M)+1+nelog|S
<I(S;Y" | M)+e+1+nelog|S]
=T1(SM;Y" | M)+ e+ 1+ nelog|S|

— K—6< lim i[(T;y”\M) < lim maXlI(T;y”)
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imaxI(T;y).

T|X

a) Definition; b) Fano’s inequality; ¢) data processing inequality; d) chain rule for mutual information
e) Devetak, et al. "Distilling common randomness from bipartite quantum states." IEEE TIT 50.12 (2004): 3183-3196 o



Proof Theorem 1 TUTI

Direct

e The achievability part follows directly using the Classical-Quantum
Slepian-Wolf (CQSW) protocol [1].

e We just need to consider the codewords of each such channel code to be
almost of the same type.
o This can be achieved by considering the largest subcode with
codewords of constant type. This gives the conditional distribution of
S uniform.

[1] Devetak, et al. "Classical data compression with quantum side information." Physical Review A 68.4 (2003): 042301.
[2] Ahlswede, et al. "Common randomness in information theory and cryptography. I." IEEE TIT 39.4 (1993): 1121-1132. /



Remarks for Theorem 1

Storage rate & Disturbance

1. R=-+logM~HX|Y) +4

2. ZXnP(Xn)HﬁXn—,OXnHl<\/§—|-€.

[1] Devetak, et al. "Classical data compression with quantum side information." Physical Review A 68.4 (2003): 042301. 3
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Storage rate Constraint
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1 1 For a QPUF with CQ output at the two terminals, the
EH(S) — Elog S SK capacity as a function of storage rate is given by
log|S| > K — e C4 () = sup{I(T:Y) | I(T; X) - I(T:Y) < )

n

1 R is the bound on the unsecured non-volatile memory.
Zlog M| <R

[1] Nilesh, K., et al. "Information Theoretic Analysis of a Quantum PUF." ISIT (2024) 9
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[1] Devetak, et al. "Distilling common randomness from bipartite quantum states." IEEE TIT 50.12 (2004): 3183-3196. 9



Proof of Theorem 2 TuTl

Converse

e The converse directly follows from the converse
of [1].

e as the secret key rate cannot be larger than the
common randomness rate generated through the
same system.

[1] Devetak, et al. "Distilling common randomness from bipartite quantum states." IEEE TIT 50.12 (2004): 3183-3196. 10



Proof of Theorem 2

Direct

From Theorem 1, with S = S (X"), we have the achievability of

(K B) = (LIS, 2H(S197)

n n
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Proof of Theorem 2

Direct

From Theorem 1, with S = S (X"), we have the achievability of

(K B) = (LIS, 2H(S197)

n n

We estimate these quantities using Lemma:

ULemma 1: For every ¢, > 0 and n > na(|T1,|X|,d,9,€), there exists a function

E: X" — T"such that

—H (V" |€(X") < HY|T)+5,

axnexm) —HX | T) <6

n ~

[1] Devetak, et al. "Distilling common randomness from bipartite quantum states." IEEE TIT 50.12 (2004): 3183-3196. 11



Proof of Theorem 2

Direct

o H(S|YV")<IT;X)-IT;))+0

® LI(SY")=[H(S)-H(S|YM > IT;Y)—
This gives the achievability of

(K, R) = (I(T;)), [(T; X) — I(T}; )))
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Results

Privacy Leakage Constraint
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Results

Privacy Leakage

Pr(S # §) < € Theorem 3

%I(S A M) = 0 . Ny

iH(S) _ ilog S Csk (L) = Cgg (L)

n n =sup{I(T;)) | I(T; X) — I(T;Y) < L}
%log S| > K —e i
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The SK capacity with privacy leakage constraint is
equivalent to the SK capacity with storage constraint
when the bound on these two constraints are the same.

[1] Nilesh, K., et al. "Information Theoretic Analysis of a Quantum PUF." ISIT (2024) 12



Proof of Theorem 3 TUTI

Direct

e The basic idea Is to construct a code that achieves the SK
capacity with storage rate constraint given in Theorem 2.

° Particularly Llog|M| < L.

13



Proof of Theorem 3 TUTI

Direct

e The basic idea Is to construct a code that achieves the SK
capacity with storage rate constraint given in Theorem 2.

° Particularly Llog|M| < L.
e Now using the fact that I(X"AM)<log|M

o We observe that the same code achieves the SK
capacity with privacy leakage constraint.

13



Proof of Theorem 3

Converse

e For a given fixed blocklength n, we perform a quantum
measurement on the second terminal that collapses the

classical-quantum system to a classical-classical system.

o After measurement, we represent the terminal " by the mea-

-surement outcome given by the classical random variable Y ".
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Definition: For a QPUF (&, D), We call E > 0 an achievable false acc-
-eptance exponent with secret key rate K, if for any € > 0 there is an
ng € N such that for all n > n( there is a QPUF protocol (€, D) such

1
that —log |S| > K — €, and the following conditions are satisfied :
n

FRR < ¢

1 1

| >FE—
n 08 mFAR ‘

We denote the capacity region by R,,rar(K, E) = {(K, E) is achievable}.
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Theorem 4

The capacity region in terms of false acce-

-ptance exponent and SK rate is given by

7Q'fm,FAR(I{aE'):
{(K,EF) | 0K KLI(X;)Y)andO<K< ELI(X;))}

[1] Nilesh, K., et al. "Authentication based on Quantum PUF." submitted 15
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Theorem 5

The following bound holds for any 61,09 > 0

1 1
K —9§; < —1 <K+9
: nongAR T 02

where K is the secret key rate and

mF ARis the maximum false acceptance rate
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Applications

Secure Storage

PI’(D#ZA)) <e€ Theorem 5

I(M;D) =0 Conl)

1 PL —

—log|D| > R, — ¢ supL(15)) | I(1;X) — I(1T;)Y) < L
n T|X

1

— I (M; X") <L

mn

[1] Nilesh, K., et al. "Secure Storage and Identification based on Quantum PUF." submitted 16
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