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Motivation

▶ 6G expand Tactile Internet and IoT for consumers

▶ 6G central requirement: trustworthines12

▶ Base-band signal processing implemented on digital processors

1G. P. Fettweis and H. Boche, “On 6G and trustworthiness,” Commun. ACM, vol. 65, no. 4, pp. 48–49, Apr. 2022.
2G. P. Fettweis and H. Boche, “6G: The personal Tactile Internet—and open questions for information theory,” IEEE BITS Inf. Theory Mag.,

vol. 1, no. 1, pp. 71–82, Sep. 2021.
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Motivation

▶ Wireless communication relies on efficient resource allocation

▶ Network-centric and user-centric objectives

▶ Power constraints

▶ Interdependencies generated by interference ⇒ jointly optimization of
communication links

Given a communication network, find an algorithm that optimizes
resource allocation problems subject to power constraint

How can we formalize this in a precise and rigorous way?
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Computability Framework3

▶ Alan M. Turing was the first to study
this kind of problems systematically

▶ He developed a computing model
▶ ⇒ Turing machines

▶ Object of interest: real numbers

3A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proc. London Math. Soc., vol. 2, no. 42,
pp. 230–265, Nov. 1936.
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Computable Numbers

https://mathvoices.ams.org/featurecolumn/2021/12/01/alan-turing-computable-numbers/
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Turing Machine4

Program
<latexit sha1_base64="D1yZnKllsqC3Nhi+Y0jBdDV/G3o=">AAAB9XicbVDLSgNBEJyNrxhfUY9ehgTBU9iNgh4DXjxGMA9IYpidzCZD5rHM9KphyX948aCIV//Fm3/jJNmDJhY0FFXddHeFseAWfP/by62tb2xu5bcLO7t7+wfFw6Om1YmhrEG10KYdEssEV6wBHARrx4YRGQrWCsfXM7/1wIzlWt3BJGY9SYaKR5wScNJ9F9gTpHWjh4bIab9Y9iv+HHiVBBkpowz1fvGrO9A0kUwBFcTaTuDH0EuJAU4Fmxa6iWUxoWMyZB1HFZHM9tL51VN86pQBjrRxpQDP1d8TKZHWTmToOiWBkV32ZuJ/XieB6KqXchUnwBRdLIoSgUHjWQR4wA2jICaOEGq4uxXTETGEgguq4EIIll9eJc1qJTivVG8vyrVSFkcenaASOkMBukQ1dIPqqIEoMugZvaI379F78d69j0VrzstmjtEfeJ8/MFeS2w==</latexit>

Tape
<latexit sha1_base64="6XCegSWCaj/jICKHxjOOK2Ryc88=">AAACDXicbZC7TgJBFIZn8YZ4Qy1tJiCJFe6iiZYkNpRouCVAyOxwgAmzl8ycNZINL2Djq9hYaIytvZ1v4yxQKPgnk3z5z2VyfjeUQqNtf1uptfWNza30dmZnd2//IHt41NBBpDjUeSAD1XKZBil8qKNACa1QAfNcCU13fJPUm/egtAj8Gk5C6Hps6IuB4AyN1cueFjoIDxjfAeufN5VAoBWD08zcrrEQppleNm8X7ZnoKjgLyJOFqr3sV6cf8MgDH7lkWrcdO8RuzBQKLs3CTqQhZHzMhtA26DMPdDeeXTOlBeP06SBQ5vlIZ+7viZh5Wk8813R6DEd6uZaY/9XaEQ6uu7HwwwjB5/OPBpGkGNAkGtoXCjjKiQHGTRSCUz5iinE0ASYhOMsnr0KjVHQuiqXby3w5t4gjTU5IjpwRh1yRMqmQKqkTTh7JM3klb9aT9WK9Wx/z1pS1mDkmf2R9/gCsUZs0</latexit>

Read/Write Head
<latexit sha1_base64="adVWeXBSe7L4GyecVgrJN5egpRM=">AAACDXicbZC7TgJBFIZn8YZ4Qy1tJiCJFe6iiZYkNpRouCVAyOxwgAmzl8ycNZINL2Djq9hYaIytvZ1v4yxQKPgnk3z5z2VyfjeUQqNtf1uptfWNza30dmZnd2//IHt41NBBpDjUeSAD1XKZBil8qKNACa1QAfNcCU13fJPUm/egtAj8Gk5C6Hps6IuB4AyN1cuedhAeML4D1j9vKoFAKwanmcLcr7EQppleNm8X7ZnoKjgLyJOFqr3sV6cf8MgDH7lkWrcdO8RuzBQKLs3CTqQhZHzMhtA26DMPdDeeXTOlBeP06SBQ5vlIZ+7viZh5Wk8813R6DEd6uZaY/9XaEQ6uu7HwwwjB5/OPBpGkGNAkGtoXCjjKiQHGTRaCUz5iinE0ASYhOMsnr0KjVHQuiqXby3w5t4gjTU5IjpwRh1yRMqmQKqkTTh7JM3klb9aT9WK9Wx/z1pS1mDkmf2R9/gCxaZs0</latexit>

▶ Mathematical model of an abstract machine that manipulates symbols on a strip
of tape according to a table of rules

▶ Error free execution

▶ No limitations on computational complexity

▶ No limitation on computing capacity or storage

4A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proc. London Math. Soc., vol. 2, no. 42,
pp. 230–265, Nov. 1936.
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Computable Numbers

Definition 1
A sequence of rational numbers {rn}n∈N is called a computable sequence if there exist
recursive functions a, b, s : N → N with b(n) ̸= 0 for all n ∈ N and

rn = (−1)s(n)
a(n)

b(n)
, n ∈ N

Definition 2
A real number x is said to be computable if there exists a computable sequence of
rational numbers {rn}n∈N, such that

|x− rn| < 2−n n ∈ N
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Computable Numbers
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Wireless Setup

▶ Wireless communication system with K parties

▶ Link between parties V ∈ RK×K

▶ Link from user l to user k: Vk,l ≥ 0 with 1 ≤ k ≤ K and 1 ≤ l ≤ K

▶ Power allocation P ∈ RK

▶ SINR k-th receiver:

γk(P ) = SINRk(P ) =
αkPk∑

l=1
l ̸=k

Vk,lPl + σ2
k

Pk power level k-th signal,
∑K

l=1 Vk,lPl accumulated interference power, σ2
k > 0

noise power, and αk > 0 matched filter effect on the receiver56

5H. Boche and M. Schubert, “Resource allocation in multiantenna systems-achieving max-min fairness by optimizing a sum of inverse sir,” IEEE
Trans. Signal Process., vol. 54, no. 6, pp. 1990–1997, Jun. 2006.

6M. Schubert and H. Boche, Interference calculus: A general framework for interference management and network utility optimization. Springer
Science & Business Media, 2011, vol. 7.
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Power Constraint

▶ Individual power constraint: Mind(Ψ, λ) = {P ∈ RK : P ≥ 0, Ψ(Pk) ≤ λ}.
▶ Total power constraint: Msum(Ψ, λ) = {P ∈ RK : P ≥ 0,

∑K
k Ψ(Pk) ≤ λ}

Standard formulation of convex optimization problems7

7S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
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Max-min Fairness8,9

▶ The capacity with individual power constraint:

C ind
maxmin(Ψ) = max

P∈Mind(Ψ)
min

1≤k≤K
γk(P )

▶ The capacity with total power constraint:

Csum
maxmin(Ψ) = max

P∈Msum(Ψ)
min

1≤k≤K
γk(P )

Several algorithms were proposed to solve interference balancing. However, there is no
general stopping criterion until now

Is it possible to find a general algorithmical stopping criterion?

8H. Boche and M. Schubert, “Concave and convex interference functions—general characterizations and applications,” IEEE Trans. Signal
Process., vol. 56, no. 10, pp. 4951–4965, Oct. 2008.

9H. Boche and M. Schubert, “The structure of general interference functions and applications,” IEEE Trans. Inf. Theory, vol. 54, no. 11,
pp. 4980–4990, 2008.
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Core Question

Question 1:
For a fixed individual power constraint function Ψ , is it possible to find an algorithm
that takes the parameters αk, V , and σ2 as input and computes the max-min fairness
C ind
maxmin(α, V, σ

2)? For the same parameters, is it possible to find an algorithm that
computes the max-min power allocation?

Question 2:
For a fixed total power constraint function Ψ , is it possible to find an algorithm that
takes the parameters αk, V , and σ2 as input and computes the max-min fairness

Csum
maxmin(α, V, σ

2)? For the same parameters, is it possible to find an algorithm that
computes the max-min power allocation?
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Computability Max-min Fairness

Theorem 1
There is a computable convex function Ψ , such that for every computable σ2

k and
computable V with we have that

1. For every optimal power allocation P̂ of the max-min fairness problem under the
sum constraint, the following holds: If Vk,k = 0, for 1 ≤ k ≤ K, then P̂ contains
non-computable elements and Csum

maxmin(Ψ) is not a computable number

2. For every optimal vector P̃ of the max-min fairness problem under individual
power constraints it holds that the vector P̃ non-computable elements. It also
holds that C ind

maxmin(Ψ) is not a computable number10

10H. Boche, A. Grigorescu, R. F. Schaefer, and H. V. Poor, “On the solvability of resource allocation problems for wireless systems on digital
computers,” in Proc. IEEE Int. Conf. Commun., to appear, 2024.
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Computability Max-min Fairness

▶ There is a convex and computable power constraint function (sum & ind), such
that there is no stopping criterion for either approximating the max-min fairness
or approximating the max-min power allocation at any desired precision

▶ There is no algorithm for either the max-min fairness or the max-min fair
allocation that can take any precision and stops at the desired precision

▶ There is no general stopping criterion for SNIR Balancing!
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Utility Maximization11,12

▶ Gain function: φ : [0,∞) → R
▶ Total gain:

∑K
k=1 βkφ(γk(P ))

▶ Weight importance k-th party: βk ≥ 0, 1 ≤ k ≤ K

C ind
utility(Ψ) = max

P∈Mind(Ψ)

K∑
k=1

βkφ(γk(P ))

Csum
utility(Ψ) = max

P∈Msum(Ψ)

K∑
k=1

βkφ(γk(P )).

11H. Boche, S. Naik, and T. Alpcan, “Characterization of convex and concave resource allocation problems in interference coupled wireless
systems,” IEEE Trans. Signal Process., vol. 59, no. 5, pp. 2382–2394, May 2011.

12T. Alpcan, H. Boche, M. L. Honig, and H. V. Poor, Mechanisms and games for dynamic spectrum allocation. Cambridge University Press, 2013.
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Core Question

Question 3:
For a fixed individual power constraint function Ψ , is it possible to find an algorithm
that takes the parameters αk, V , and σ2 as input and computes the optimal power

allocation vector P̂ (α, V, σ2) that maximizes the utility function C ind
utility(Ψ)?

Question 4:
For a fixed total power constraint function Ψ , is it possible to find an algorithm that

takes the parameters αk, V , and σ2 as input and computes the optimal power
allocation vector P̃ (α, V, σ2) that maximizes the utility function Csum

utility(Ψ)?
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Computability Power Allocation Utility

Theorem 2
There is a computable convex function Ψ , such that for every computable σ2

k and computable V
such that
1. Every optimal power allocation P̂ ∈ Msum such that

Csum
utility(Ψ) =

K∑
k=1

βkϕ(γk(P̂ ))

contains elements that are not in Rc

2. Every optimal power allocation P̃ ∈ Mind such that

C ind
utility(Ψ) =

K∑
k=1

βkϕ(γk(P̃ ))

the vector P̃ contains elements that are not Rc
a

aH. Boche, A. Grigorescu, R. F. Schaefer, and H. V. Poor, “On the solvability of resource allocation problems for wireless systems on digital computers,” in Proc. IEEE
Int. Conf. Commun., to appear, 2024.
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Computability Power Allocation Utility

▶ There is no algorithm that, when given a precision of 1
2M

, stops when the

computed power allocation is within a margin of error of 1
2M

from the optimal
power allocation
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Conclusions

▶ There exists a computable convex constraint function, both for individual and
total power, such that for every computable noise, computable communication
link matrix, and computable gain functions, the optimal power allocation vector
for utility maximization proves to contain non-computable elements.

▶ Max-min fairness scenario under the same power constraint, both max-min
fairness and the corresponding power allocation vector contain non-computable
elements.
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Thank you for your attention!

21 / 24



Aknowledgments

This work of H. Boche was supported by

▶ BMBF within 6G-life under Grant 16KISK001

▶ BMBF within Post Shannon Communication (NewCom) under Grant 16KIS1003K

▶ BMBF within Hardware Platforms and Computing Models for Neuromorphic
Computing (NeuroCM) under Grant 16ME0442

This work of R. F. Schaefer was supported by the

▶ BMBF within 6G-life under Grant 16KISK002

▶ DFG within the Priority Program “Resilient Worlds” under Grant SCHA
1944/11-1

▶ DFG within Germany’s Excellence Strategy - EXC 2050/1 - Project ID 390696704
CeTI

This work of H. V. Poor was supported by

▶ U.S. National Science Foundation under Grants CNS-2128448 and ECCS-2335876

22 / 24



Literature

▶ G. P. Fettweis and H. Boche, “On 6G and trustworthiness,” Commun. ACM, vol. 65,
no. 4, pp. 48–49, Apr. 2022

▶ G. P. Fettweis and H. Boche, “6G: The personal Tactile Internet—and open questions for
information theory,” IEEE BITS Inf. Theory Mag., vol. 1, no. 1, pp. 71–82, Sep. 2021

▶ H. Boche, A. Grigorescu, R. F. Schaefer, and H. V. Poor, “On the solvability of resource
allocation problems for wireless systems on digital computers,” in Proc. IEEE Int. Conf.
Commun., to appear, 2024

▶ A. M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem,” Proc. London Math. Soc., vol. 2, no. 42, pp. 230–265, Nov. 1936

▶ H. Boche and M. Schubert, “Resource allocation in multiantenna systems-achieving
max-min fairness by optimizing a sum of inverse sir,” IEEE Trans. Signal Process., vol. 54,
no. 6, pp. 1990–1997, Jun. 2006

▶ M. Schubert and H. Boche, Interference calculus: A general framework for interference
management and network utility optimization. Springer Science & Business Media, 2011,
vol. 7

23 / 24



Literature

▶ S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004

▶ H. Boche and M. Schubert, “Concave and convex interference functions—general
characterizations and applications,” IEEE Trans. Signal Process., vol. 56, no. 10,
pp. 4951–4965, Oct. 2008

▶ H. Boche and M. Schubert, “The structure of general interference functions and
applications,” IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 4980–4990, 2008

▶ H. Boche, A. Grigorescu, R. F. Schaefer, and H. V. Poor, “On the solvability of resource
allocation problems for wireless systems on digital computers,” in Proc. IEEE Int. Conf.
Commun., to appear, 2024

▶ H. Boche, S. Naik, and T. Alpcan, “Characterization of convex and concave resource
allocation problems in interference coupled wireless systems,” IEEE Trans. Signal Process.,
vol. 59, no. 5, pp. 2382–2394, May 2011

▶ T. Alpcan, H. Boche, M. L. Honig, and H. V. Poor, Mechanisms and games for dynamic
spectrum allocation. Cambridge University Press, 2013

24 / 24


	Motivation
	Computability Framework
	Communication System
	Max-min Fairness
	Utility Maximization
	Conclusions

