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Since the work of [1] on the finite blocklength performance of capacity-achieving codes for discrete memoryless channels,
many papers have developed further results for several practically relevant channels, see [2]–[4]. However, the complexity of
computing capacity-achieving codes has not been investigated until now. We study this question for one of the simplest of
non-trivial Gaussian channels, i.e., the additive colored Gaussian noise (ACGN) channel.

In this context, it is essential to have a well-defined concept of complexity. In particular, the “parameters” of the
communication system should be of low complexity, meaning they should be easy to describe. We focus on a point-to-
point ACGN channel. This system is fully characterized by the transmission power P of the transmitter and the noise power
spectral density N . Therefore, both the transmission power P and the power spectral density N should be easy to compute.
The central question is how complex it is to compute key performance metrics of the communication system. Of particular
practical importance are the Shannon capacity and sequences of capacity-achievable codes.

To assess computational complexity, we consider the classes FP, FP1, and #P1. For this, we first need to introduce the set
of all finite strings over the binary alphabet, denoted by {0, 1}∗.

Definition 1 (Class FP). A function f : {0, 1}∗ → N is in FP if it can be computed by a deterministic Turing machine in
polynomial time.

In this work, we are also interested in studying functions that are defined on the singleton alphabet, i.e., {0}∗ ⊂ {0, 1}∗.
In other words, these functions are defined solely on the set of finite words composed of the symbol 0. The class analog to
FP defined on singleton sets are denoted by FP1. We further introduce the class #P1 also defined on the singleton alphabet.
#P1 encompasses functions that count the number of solutions verifiable by a Turing machine in polynomial time.

Definition 2 (Classes FP1 and #P1). A function f : {0}∗ → N is said to be in FP1 if it can be computed by a deterministic
Turing machine in polynomial time.

A function f : {0}∗ → N is said to be in #P1 if there exists a polynomial p : N → N and a polynomial time Turing machine
M so that for every string x ∈ {0}∗

f(x) = |{y ∈ {0}p(|x|) : M(x, y) = 1}|.

In [5], it has been shown that there exists an infinitely differentiable, strictly positive noise power spectral density N∗,
which is computable in polynomial time and such that for every sufficiently large rational power constraint P under the
widely accepted assumption FP1 ̸= #P1, the capacity C(P,N∗) cannot be computed in polynomial time, demonstrating a
complexity-blowup phenomenon.

Let ϵ > 0, ϵ ∈ Q ∩ (0, 1) be the admissible decoding error and {Rn(ϵ)}n∈N be a sequence of achievable rates of capacity
achieving codes. It is of interest to determine the conditions under which, for a given M ∈ N, where M describes the precision
of the deviation of C(P,N), for a certain blocklength nM , when the following holds:

RnM
(ϵ) > C(P,N)− 1

2M
. (1)

This is visualized in Figure 1.
Next we introduce the definition of time complexity of a computable real number.

Definition 3. Let t be an integer function. The time complexity of a computable real number x is bounded by t if there exists
a Turing machine that computes, on each input n ∈ N, a dyadic rational number d in t(n) moves such that |d− x| ≤ 2−n.

Further, we introduce the concept of a polynomial time computable number.

Definition 4. A real number x is polynomial time computable if its time complexity is bounded by a polynomial function p.

We now follow with the introduction of a polynomial time computable sequence.
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Definition 5. Let {αn}n∈N be a computable sequence of computable numbers. This sequence is computable in polynomial
time if there exists a polynomial p : N × N → N, such that for all n ∈ N and for each M ∈ N, a number αn,M ∈ Q is
computed in at most p(n,M) steps such that

|αn − αn,M | ≤ 1

2M

holds.
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Fig. 1: The red line represents the band-limited ACGN capacity C = C(P,N∗) for the power spectral density. N∗ and the
power constraint P in the asymptotic regime. The black curve represents the finite blocklength achievable rate Rn(ϵ) for some
fixed ϵ > 0. For n1 we have Rn1

(ϵ) > C − 1
2 and for n2 we have Rn2

(ϵ) > C − 1
4 . Fig. from [5].

Remark 1. It holds that Rn(ϵ) =
1
n log2 Mn(ϵ) for n ∈ N. Hence, for every n ∈ N the achievable rate Rn(ϵ) is a polynomial

time computable number.

The following theorem is discussed in the rest of the abstract.

Theorem 1. Let B be a polynomial time computable number representing the bandwidth. There exists a strictly positive and
polynomial time computable noise power spectrum N∗ such that for all sufficient large rational power constraint P∗ and for
all rational ϵ > 0, the computation of achievable rate sequence {RnM

(ϵ)}M∈N fulfilling:

RnM
(ϵ) > C(P∗, N∗)−

1

2M
. (2)

is in #P1.
If FP1 ̸= #P1, then for N∗ and for every sufficiently large P∗ ∈ Q, none of the sequences {RnM

}nM∈N satisfying (2) can
be computed in polynomial time.

Remark 2. For every M ∈ N we have that RnM
(ϵ) is a polynomial time computable number. The complexity of computing

the sequence {RnM
(ϵ)}nM∈N grows faster than any polynomial as M increases.

Remark 3. Consequently, determining the blocklengths {nM}M∈N, that satisfy (1) is not feasible in polynomial time for an
ACGN channel with noise power spectral density N∗.

Remark 4. We show that either the sequence of achievable rates {RnM
(ϵ)}nM∈N as a function of the blocklength is not a

polynomial time computable sequence, or the sequence of blocklength {nM}M∈N corresponding to the achievable rates with
guaranteed distance to capacity is not a polynomial time computable sequence, see [5].

Remark 5. Note that Theorem 1 is valid for any computable sequence of achievable rates satisfying the relation (1). In
theoretical computer science, a distinction is made between computable and non-computable solutions. For strictly positive,
computable continuous spectral densities N and computable P > 0, C(P,N) is always a computable number. However,
in computer science, there is a further distinction between feasible and unfeasible problems within the realm of computable
solutions. The feasibility thesis states that a natural problem has a feasible algorithm if and only if the problem has a polynomial
time algorithm; see [6, p. 90] and [7]. Therefore, if FP1 ̸= #P1, then the problem of computing achievable rates under the
performance constraint (1) is not algorithmically feasible, even for very easily computable performance parameters of the
communication system, i.e., N computable in polynomial time and P ∈ Q.

Finding important performance metrics for communication systems is an important task in information and communication
theory. Computer-assisted search and optimization play a crucial role here. Important questions, such as the computation of the
optimal input distribution for discrete memoryless channels or code constructions, cannot be solved algorithmically on Turing
machines depending on the communication parameters; see [8]–[10] . It is interesting to see that even for simple communication
systems, such as point-to-point ACGN channels, the complexity of important performance metrics is very high under typical
complexity assumptions, even for fixed and easily computable communication parameters.
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Band Limited ACGN Channel

• x(t) Band-limited input signal with p.s.d. Px(f)

• y(t) Band-limited output signal

• n(t) Band-limited Gaussian noise with noise spectrum N(f)

• Band B > 0

Capacity band-limited ACGN channel
The capacity of the band-limited ACGN channel with bandwidth B, and
continuous noise power spectrum N on the interval [0, B] subject to a
power constraint P > 0 is given by

C(P, N) =
∫ B

0
ln

(
1 + P ∗

x (f)
N(f)

)
df.

The capacity-achieving power spectrum density is given by

P ∗
x (f) =





[
ν − N(f)

]
+

for f ∈ [0, B]

0 f /∈ [0, B],

where ν is chosen such that
∫ B

0 P ∗
x (f) df = P is satisfied [4].

Complexity Classes
Definition 1 (Class FP1). A function f : {0}∗ → N is in FP if it can be
computed by a deterministic TM in polynomial time

Definition 2 (Class #P1). A function f : {0}∗ → N is in #P if there
exists a polynomial p : N → N and a polynomial time TM M , such that
for every string x ∈ {0}∗,

f(x) = |{y ∈ {0}p(|x|) : M(x, y) = 1}|

FP1 ̸= #P1?

Computing Finite Blocklength Performance

• {Rn(ϵ)}n∈N blocklength-dependent sequence of achievable rates
when allowing error ϵ ∈ Q [3]

• {Rn(ϵ)}n∈N converges to the capacity

RnM
(ϵ) ≥ C(P, N) − 1

2M
. (1)

• For a fixed n, the achievable rate is always a polynomial-time com-
putable number

Polynomial Time Sequence
Definition 3. Let {αn}n∈N be a computable sequence of computable num-
bers. This sequence is computable in polynomial time if there exists a
polynomial P : N × N → N, such that for all n ∈ N for each M ∈ N
a number αn,M ∈ Q is computed in at most P (n, M) steps such that it
holds:

|αn − αn,M | ≤ 1
2M

.

This notion precisely takes into account the blocklength
dependence!

What is the complexity of computing the blocklength-dependent
sequence of achievable rates for the band-limited ACGN channel
with polynomial time computable continuous noise power spec-
trum N?

Results
Theorem 1 ([2]). Let B be a polynomial time computable number. There
exists a strictly positive and polynomial time computable noise power spec-
trum N∗ such that for all sufficient large rational power constraint P∗
and for all rational ϵ > 0, the computation of achievable rate sequence
{RnM

(ϵ)}nM ∈N fulfilling:

RnM
(ϵ) > C(P∗, N∗) − 1

2M
. (2)

is in #P1. If FP1 ̸= #P1, then for N∗ and for every sufficiently large
P∗ ∈ Q, none of the sequences {RnM

}M∈N satisfying (2) can be computed
in polynomial time.

Complexity Blowup!

Computing the Band-limited ACGN Capacity
• There are computable noise spectrum, for which the capacity yields

a non-computable number [1]
⇒ Shannon’s coding approach is not effective, i.e., cannot be solved
algorithmically

• If the continuous noise power spectrum is strictly positive and
computable, then the capacity will always be a computable num-
ber [2]

Conclusions
• Determining the blocklengths {nM }M∈N, that satisfy (1) is not fea-

sible in polynomial time for an ACGN channel with noise power
spectrum N∗

• Either the sequence of achievable rates is not a polynomial-time com-
putable sequence

• Or the minimum blocklength nM corresponding to the capacity ap-
proximation

RnM
(ϵ) > C(P, N) − 1

2M

grows faster than any polynomial
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