

ISAC under Security and Privacy Constraints – from Theory to Demonstrations

Holger Boche Chair of Theoretical Information Technology Technical University of Munich

Thanks to Yiqi Chen[#], Xinyang Li^{*}, Vlad Andrei^{*}, Dongxiao Xu^{*}, Ullrich Mönich^{*} [#]TUM LTI, *ACES Lab at TUM

BMBF 6G Conference 2024, Berlin July 3, 2024

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Contents

- 1. Integrated Sensing and Communication
- 2. Integrated Sensing and Communication with Trustworthiness
- 3. From Theory to Demonstrations and Resilience
- 4. Demonstration at BMBF 6G Congress 2024
- 5. Further Directions, Conclusion and Outlook

Integrated Sensing and Communication (ISAC)

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Point-to-point Channel

- State-dependent discrete memoryless channel (SD-DMC) with channel transition distribution $P_{Y|XS}$, state P_S
- Side information at transmitter (SI-T) $S_T \sim P_{S_T|S}$, strictly-causal, causal or non-causal available
- Side information at receiver (SI-R) S_R, treated as another channel output, Z = (Y, S_R)
- Feedback present Y' = Y or absent $Y' = \emptyset$
- Message decoding $\hat{M} = f_d(Z^n)$
- State estimator $\hat{S}_i = h_i(S^n)$

Point-to-point Channel

- Message decoding error probability $P_e^{(n)} \triangleq \frac{1}{2^{nR}} \sum_m \Pr\{f_d(Z^n) \neq M | M = m\}$
- Expected estimation distortion $D^{(n)} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[d(S_i, \hat{S}_i)]$
- Capacity-distortion function C(D): the supremum of code rate R such that $\lim_{n\to\infty} P_e^{(n)} = 0$ and $\limsup_{n\to\infty} D^{(n)} \le D$
- GOAL: find the C-D functions for three causality levels: $C^{SC}(D)$, $C^{C}(D)$ and $C^{NC}(D)$

[1] X. Li, V. C. Andrei, A. Djuhera, U, J. Mönich, H. Boche, "An Analysis of Capacity-Distortion Trade-Offs in Memoryless ISAC Systems," arXiv preprint arXiv:2402.17058, 2024.

Point-to-point Channel

- Communication-only mode: $C(\infty)$, no state estimation task
- Sensing-only mode: *D*_{min}, no message transfer task, but communication may happen to encode the SI-T
- Radar mode: special case of sensing-only mode, with $S_R = X$, Y' = Y for monostatic and $Y' = \emptyset$ for bistatic
- Complicated systems modeled by combining multiple links at various modes \rightarrow see BC channel later

[1] X. Li, V. C. Andrei, A. Djuhera, U, J. Mönich, H. Boche, "An Analysis of Capacity-Distortion Trade-Offs in Memoryless ISAC Systems," arXiv preprint arXiv:2402.17058, 2024.

C-D function for P2P Channel

Theorem 1

$$R(D) \triangleq \max_{\substack{P_{U|S_{T}}, P_{X|US_{T}}, P_{V|US_{T}Y'}}} I(U; Z) - I(U; S_{T}) - I(V; S_{T}|U, Z)$$

s.t. $\mathbb{E}[d(S, h^{*}(U, V, Z))] \leq D$

with the optimal estimator h^* given by

$$h^*(u, v, z) = \arg\min_{\hat{s} \in \hat{\mathscr{S}}} \sum_{s \in \mathscr{S}} P_{S|UVZ}(s|u, v, z) d(s, \hat{s}).$$

The C-D functions for strictly causal case $C^{SC}(D)$, causal case $C^{C}(D)$, and non-causal case $C^{NC}(D)$ satisfy

$$C^{SC}(D) = R(D) \quad \text{s.t.} \quad P_{U|S_T} = P_U, \ P_{X|US_T} = P_{X|U},$$

$$C^C(D) = R(D) \quad \text{s.t.} \quad P_{U|S_T} = P_U,$$

$$C^{NC}(D) \ge R(D).$$

[1] X. Li, V. C. Andrei, A. Djuhera, U, J. Mönich, H. Boche, "An Analysis of Capacity-Distortion Trade-Offs in Memoryless ISAC Systems," arXiv preprint arXiv:2402.17058, 2024.

Integrated Sensing and Communication with Trustworthiness

(Security, Privacy, and Integrity Part of Trustworthiness)

[2] G. Fettweis and H. Boche, "On 6G and trustworthiness," Communications of the ACM, vol. 65, no. 4, pp. 48–49, Apr. 2022.
 [3] G. Fettweis and H. Boche, "6G: The personal tactile internet—and open questions for information theory," IEEE BITS the Information Theory Magazine, vol. 1, no. 1, pp. 71–82, 2021.

- Estimation and decoding are not the end of the workflow.
- The further processing of the estimation result can be characterized by a function

$$\kappa: \mathcal{S}^n \to \mathbb{R}, \text{ s.t. } \max_{s^n \in \mathcal{S}^n} \kappa(s^n) = \Upsilon < \infty$$

[4] Y. Chen, T. Oechtering, H. Boche, M. Skoglund, Y. Luo, "Distribution-Preserving Integrated Sensing and Communication with Secure Reconstruction," in IEEE International Symposium on Information Theory (ISIT 2024), 2024.

Motivation

- The definition of κ depends on the objective of the system.
- What can we do?
 - By controlling the distribution of the estimation, we have

$$\max_{\substack{\kappa: \max_{\hat{s}^n} |\kappa(\hat{s}^n)| \leq \Upsilon}} \left| \mathbb{E}_{P_{S}^{n}} [\kappa(S^{n})] - \mathbb{E}_{P_{\hat{s}^n}} \left[\kappa(\hat{S}^n) \right] \right|$$
$$\leq \Upsilon \sum_{s^n \in S^n} \left| P_{S}^{n}(s^n) - P_{\hat{S}^n}(s^n) \right|$$

• The gap between the expectations is upper bounded by the distance between $P_{\hat{S}^n}$ and P_S^n no matter what processing function κ is selected.

 \Rightarrow This bound is sharp, i.e., $P_{\hat{S}^n} = P_S^n$ is the only way to achieve integrity.

Model Definition

- S_e^n represents some prior knowledge about the system.
- The decoder produces an estimation of the transmitted message \hat{M} .
- The state estimator produces an estimation of the channel state sequence \hat{S}^n . We only consider estimator with $P_{\hat{S}^n} = P_S^n$.
- The common randomness is shared between the encoder, decoder and estimator.

Main Result: Unlimited Randomness $R_c = \infty$

Theorem (Capacity)

The distribution-preserving capacity-distortion function with unlimited common randomness is

$$C^{\infty}(D,\Delta) = \begin{cases} (R,\infty) \in \mathbb{R}^2 : \exists P_{S_eSUXYZ\hat{S}} \in \mathcal{P}_{UCR}, \\ R \leq I(U;Y) - I(U;S_e), \\ D \geq \mathbb{E}[d(S,\hat{S})], \end{cases}$$

where $\mathcal{P}_{UCR} = \{ P_{S_eSUXYZ\hat{S}} \in \mathcal{P}(U, X, \hat{S}) : ||P_S - P_{\hat{S}}|| \leq \Delta \}$

 The convexity of the function C[∞](D, Δ) is still open due to the fact that the optimization runs over both P_{U|Se} and P_{X|SeU}.

[4] Y. Chen, T. Oechtering, H. Boche, M. Skoglund, Y. Luo, "Distribution-Preserving Integrated Sensing and Communication with Secure Reconstruction," in IEEE International Symposium on Information Theory (ISIT 2024), 2024.

GEFÖRDERT VOM

ISAC with Secure Reconstruction

- A henchman observes the reconstructed sequence, and sends a message to the eavesdropper.
- The eavesdropper also receives the channel output, but has no access to the common randomness.

GEFÖRDERT VOM

• Full results, see [1]

[4] Y. Chen, T. Oechtering, H. Boche, M. Skoglund, Y. Luo, "Distribution-Preserving Integrated Sensing and Communication with Secure Reconstruction," in IEEE International Symposium on Information Theory (ISIT 2024), 2024.

From Theory to Demonstrations and Resilience

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

From Theory to Demonstrations

- Results show that common randomness (CR) is needed
- Distillation of CR is important Post Shannon task [5], and very useful for physical layer security
- 6G-life Talk: "Achievability Schemes for Semantic Security" by Dr. M. Wiese
- 6G-life Demo: "Physical Layer Security for mmWave" by TUM ACES Lab
- The new result: CR is needed for ISAC
- Several patents with Deutsche Telekom AG have been filed [6], [7]
- A new 6G-life startup (SPRIN-D NCC Finalist) for Post Shannon tasks [5]

[5] J. A. Cabrera, H. Boche, C. Deppe, R. F. Schaefer, C. Scheunert, and F. H. P. Fitzek, "6G and the Post-Shannon Theory," Shaping Future 6G Networks: Needs, Impacts, and Technologies, pp. 271–294, 2021.
[6] P. Schwenteck, G. T. Nguyen, H. Boche, W. Kellerer and F. H. P. Fitzek, "6G Perspective of Mobile Network Operators, Manufacturers, and Verticals," IEEE Networking Letters, vol. 5, no. 3, pp. 169–172, 2023.
[7] R. Ezzine, M. Wiese, C. Deppe, H. Boche, "Common Randomness Generation from Finite Compound Sources," IEEE International Symposium on Information Theory, IEEE, 2024.

ISAC for Resilience by Design in 6G

- Future 6G communication systems should be resilient against jamming
- Study of adversarial jamming (full knowledge)
- Transmitters are oblivious of jamming, resilience is generated by receiver; solution in [8]
- Neuromorphic hardware of a 6G-life startup (SPRIN-D NCC Finalist) is used to implement ISAC
- Neuromorphic hardware is necessary to detect denial-of-service attacks [9]

[8] V.-C. Andrei, X. Li, U. J. Mönich, and H. Boche, "Sensing-Assisted Receivers for Resilient-By-Design 6G MU-MIMO Uplink," in IEEE International Symposium on Joint Communications & Sensing, 2023. (Received the Best Paper Award).

[9] H. Boche, R.F. Schaefer, H.V. Poor, F.H.P. Fitzek, "On the Need of Neuromorphic Twins to Detect Denial-of-Service Attacks on Communication Networks," IEEE/ACM Transactions on Networking (Early Access), 2024.

GEFÖRDERT VOI

Bundesministerium

für Bildung und Forschung

[10] V. Andrei, X. Li, "Demonstrator: A Digital Twinning Platform for Integrated Sensing, Communications and Robotics," 4th IEEE Symposium on Joint Communications & Sensing, March 2024. (Received the Best Student Demo Award.)

ISAC in the Demo Session

Demo: Digital-Twin Assisted Integrated Sensing and Communications

Bundesministerium für Bildung und Forschung

ISAC in mmWave for Robotic Applications

mmWave Experiental Setup

mmWave Antenna and Mixer (TMYTEK / NI)

BBox One 5G 26.5 - 29.5 GHz

BBox Lite 5G 26.5 - 29.5 GHz

Source: TMYTEK / NI

UD Box 5G

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Aerial Drones for ISAC and ISAC for Aerial Drones

- High mobility
- Multiantenna drones and robots
- Jamming and anti-jamming extensions

Technische Universität München

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Further Directions, Conclusion and Outlook

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Further Directions, Conclusion and Outlook

- mmWave for robotic applications
- Digital and neuromorphic twinning and Metaverse [11]
- Extension to high mobility drones with different frequencies and MIMO multiantenna beamforming
- Security and privacy extensions
- Integrated Sensing and Post Shannon Communication
- Integrated Quantum Sensing and Quantum Communication (see QUIET Talk)
- Complete new aspects to trustworthiness, inspired by European AI-Act and G7 Hiroshima Process on AI, i.e., algorithmic transparency, right to explainability and algorithmic accountability [12]

[11] Y.N. Böck, H. Boche, R.F. Schaefer, F.H.P. Fitzek, H.V. Poor, "Virtual-Twin Technologies in Networking," IEEE Communications Magazine 61 (11), 2023, 136–141.
 [12] H. Boche, A. Fono, G. Kutyniok, "A Mathematical Framework for Computability Aspects of Algorithmic Transparency," IEEE International Symposium on Information Theory, IEEE, 2024.

Bundesministerium

für Bildung und Forschung

References

[1] X. Li, V. C. Andrei, A. Djuhera, U, J. Mönich, H. Boche, "An Analysis of Capacity-Distortion Trade-Offs in Memoryless ISAC Systems," arXiv preprint arXiv:2402.17058, 2024.

[2] G. Fettweis and H. Boche, "On 6G and trustworthiness," Communications of the ACM, vol. 65, no. 4, pp. 48–49, Apr. 2022.

[3] G. Fettweis and H. Boche, "6G: The personal tactile internet—and open questions for information theory," IEEE BITS the Information Theory Magazine, vol. 1, no. 1, pp. 71–82, 2021.

[4] Y. Chen, T. Oechtering, H. Boche, M. Skoglund, Y. Luo, "Distribution-Preserving Integrated Sensing and Communication with Secure Reconstruction," in IEEE International Symposium on Information Theory (ISIT 2024), 2024.

[5] J. A. Cabrera, H. Boche, C. Deppe, R. F. Schaefer, C. Scheunert, and F. H. P. Fitzek, "6G and the Post-Shannon Theory," Shaping Future 6G Networks: Needs, Impacts, and Technologies, pp. 271–294, 2021.

[6] P. Schwenteck, G. T. Nguyen, H. Boche, W. Kellerer and F. H. P. Fitzek, "6G Perspective of Mobile Network Operators, Manufacturers, and Verticals," IEEE Networking Letters, vol. 5, no. 3, pp. 169–172, 2023.

[7] R. Ezzine, M. Wiese, C. Deppe, H. Boche, "Common Randomness Generation from Finite Compound Sources," IEEE International Symposium on Information Theory, IEEE, 2024.

[8] V.-C. Andrei, X. Li, U. J. Mönich, and H. Boche, "Sensing-Assisted Receivers for Resilient-By-Design 6G MU-MIMO Uplink," in IEEE International Symposium on Joint Communications & Sensing, 2023. (Received the Best Paper Award).

[9] H. Boche, R.F. Schaefer, H.V. Poor, F.H.P. Fitzek, "On the Need of Neuromorphic Twins to Detect Denial-of-Service Attacks on Communication Networks," IEEE/ACM Transactions on Networking (Early Access), 2024.

[10] V. Andrei, X. Li, "Demonstrator: A Digital Twinning Platform for Integrated Sensing, Communications and Robotics," 4th IEEE Symposium on Joint Communications & Sensing, March 2024. (Received the Best Student Demo Award.)

[11] Y.N. Böck, H. Boche, R.F. Schaefer, F.H.P. Fitzek, H.V. Poor, "Virtual-Twin Technologies in Networking," IEEE Communications Magazine 61 (11), 2023, 136–141.

[12] H. Boche, A. Fono, G. Kutyniok, "A Mathematical Framework for Computability Aspects of Algorithmic Transparency," IEEE International Symposium on Information Theory, IEEE, 2024.

Thank you

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung