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Abstract

This survey reviews fundamental concepts of multi-user information
theory. Starting with typical sequences, the survey builds up knowl-
edge on random coding, binning, superposition coding, and capacity
converses by introducing progressively more sophisticated tools for
a selection of source and channel models. The problems addressed
include: Source Coding; Rate-Distortion and Multiple Descriptions;
Capacity-Cost; The Slepian–Wolf Problem; The Wyner-Ziv Problem;
The Gelfand-Pinsker Problem; The Broadcast Channel; The Multiac-
cess Channel; The Relay Channel; The Multiple Relay Channel; and
The Multiaccess Channel with Generalized Feedback. The survey also
includes a review of basic probability and information theory.



Notations and Acronyms

We use standard notation for probabilities, random variables,
entropy, mutual information, and so forth. Table 1 lists notation devel-
oped in the appendices of this survey, and we use this without further
explanation in the main body of the survey. We introduce the remain-
ing notation as we go along. The reader is referred to the appendices for
a review of the relevant probability and information theory concepts.

Table 1 Probability and information theory notation.

Sequences, Vectors, Matrices
xn the finite sequence x1,x2, . . . ,xn

xnym sequence concatenation: x1,x2, . . . ,xn,y1,y2, . . . ,ym

x the vector [x1,x2, . . . ,xn]
H a matrix
|Q| determinant of the matrix Q

(Continued)
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Notations and Acronyms 267

Table 1 (Continued)

Probability
Pr[A] probability of the event A
Pr[A|B] probability of event A conditioned on event B
PX(·) probability distribution of the random variable X
PX|Y (·) probability distribution of X conditioned on Y
supp(PX) support of PX

pX(·) probability density of the random variable X
pX|Y (·) probability density of X conditioned on Y
E [X] expectation of the real-valued X
E [X|A] expectation of X conditioned on event A
Var[X] variance of X
QX covariance matrix of X

Information Theory
H(X) entropy of the discrete random variable X
H(X|Y ) entropy of X conditioned on Y
I(X;Y ) mutual information between X and Y
I(X;Y |Z) mutual information between X and Y conditioned on Z
D(PX‖PY ) informational divergence between PX and PY

h(X) differential entropy of X
h(X|Y ) differential entropy of X conditioned on Y
H2(·) binary entropy function



1
Typical Sequences and Source Coding

1.1 Typical Sequences

Shannon introduced the notion of a “typical sequence” in his 1948 paper
“A Mathematical Theory of Communication” [55]. To illustrate the
idea, consider a discrete memoryless source (DMS), which is a device
that emits symbols from a discrete and finite alphabet X in an inde-
pendent and identically distributed (i.i.d.) manner (see Figure 1.1).
Suppose the source probability distribution is PX(·) where

PX(0) = 2/3 and PX(1) = 1/3. (1.1)

Consider the following experiment: we generated a sequence of
length 18 by using a random number generator with the distribution
(1.1). We write this sequence below along with three other sequences
that we generated artificially.

(a) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(b) 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0
(c) 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0
(d) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.
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1.2 Entropy-Typical Sequences 269

DMS

Fig. 1.1 A discrete memoryless source with distribution PX(·).

If we compute the probabilities that these sequences were emitted by
the source (1.1), we have

(a) (2/3)18 · (1/3)0 ≈ 6.77 · 10−4

(b) (2/3)9 · (1/3)9 ≈ 1.32 · 10−6

(c) (2/3)11 · (1/3)7 ≈ 5.29 · 10−6

(d) (2/3)0 · (1/3)18 ≈ 2.58 · 10−9.

Thus, the first sequence is the most probable one by a large margin.
However, the reader will likely not be surprised to find out that it is
sequence (c) that was actually put out by the random number genera-
tor. Why is this intuition correct? To explain this, we must define more
precisely what one might mean by a “typical” sequence.

1.2 Entropy-Typical Sequences

Let xn be a finite sequence whose ith entry xi takes on values in X .
We write X n for the Cartesian product of the set X with itself n times,
i.e., we have xn ∈ X n. Let N(a|xn) be the number of positions of xn

having the letter a, where a ∈ X .
There are several natural definitions for typical sequences. Shannon

in [55, Sec. 7] chose a definition based on the entropy of a random
variable X. Suppose that Xn is a sequence put out by the DMS PX(·),
which means that PXn(xn) =

∏n
i=1 PX(xi) is the probability that xn

was put out by the DMS PX(·). More generally, we will use the notation

Pn
X(xn) =

n∏

i=1

PX(xi). (1.2)

We further have

Pn
X(xn) =

{∏
a∈supp(PX) PX(a)N(a|xn) if N(a|xn) = 0 whenever PX(a) = 0

0 else
(1.3)
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and intuitively one might expect that the letter a occurs about
N(a|xn) ≈ nPX(a) times, so that Pn

X(xn) ≈ Πa∈supp(PX)PX(a)nPX(a) or

− 1
n

log2 Pn
X(xn) ≈

∑

a∈supp(PX)

−PX(a) log2 PX(a).

Shannon therefore defined a sequence xn to be typical with respect to
ε and PX(·) if

∣∣∣∣
− log2 Pn

X(xn)
n

− H(X)
∣∣∣∣ < ε (1.4)

for some small positive ε. The sequences satisfying (1.4) are sometimes
called weakly typical sequences or entropy-typical sequences [19, p. 40].
We can equivalently write (1.4) as

2−n[H(X)+ε] < Pn
X(xn) < 2−n[H(X)−ε]. (1.5)

Example 1.1. If PX(·) is uniform then for any xn we have

Pn
X(xn) = |X |−n = 2−n log2 |X | = 2−nH(X) (1.6)

and all sequences in X n are entropy-typical.

Example 1.2. The source (1.1) has H(X) ≈ 0.9183 and the above four
sequences are entropy-typical with respect to PX(·) if

(a) ε > 1/3
(b) ε > 1/6
(c) ε > 1/18
(d) ε > 2/3.

Note that sequence (c) requires the smallest ε.

We remark that entropy typicality applies to continuous random
variables with a density if we replace the probability Pn

X(xn) in (1.4)
with the density value pn

X(xn). In contrast, the next definition can be
used only for discrete random variables.
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1.3 Letter-Typical Sequences

A perhaps more natural definition for discrete random variables than
(1.4) is the following. For ε ≥ 0, we say a sequence xn is ε-letter typical
with respect to PX(·) if

∣∣∣∣
1
n

N(a|xn) − PX(a)
∣∣∣∣ ≤ ε · PX(a) for all a ∈ X (1.7)

The set of xn satisfying (1.7) is called the ε-letter-typical set Tn
ε (PX)

with respect to PX(·). The letter typical xn are thus sequences whose
empirical probability distribution is close to PX(·).

Example 1.3. If PX(·) is uniform then ε-letter typical xn satisfy

(1 − ε)n
|X | ≤ N(a|xn) ≤ (1 + ε)n

|X | (1.8)

and if ε < |X |− 1, as is usually the case, then not all xn are letter-
typical. The definition (1.7) is then more restrictive than (1.4) (see
Example 1.1).

We will generally rely on letter typicality, since for discrete random
variables it is just as easy to use as entropy typicality, but can give
stronger results.

We remark that one often finds small variations of the conditions
(1.7). For example, for strongly typical sequences one replaces the
εPX(a) on the right-hand side of (1.7) with ε or ε/|X | (see [19, p. 33],
and [18, pp. 288, 358]). One further often adds the condition that
N(a|xn) = 0 if PX(a) = 0 so that typical sequences cannot have zero-
probability letters. Observe, however, that this condition is included in
(1.7). We also remark that the letter-typical sequences are simply called
“typical sequences” in [44] and “robustly typical sequences” in [46]. In
general, by the label “letter-typical” we mean any choice of typicality
where one performs a per-alphabet-letter test on the empirical proba-
bilities. We will focus on the definition (1.7).

We next develop the following theorem that describes some of
the most important properties of letter-typical sequences and sets.
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Let µX = minx∈supp(PX) PX(x) and define

δε(n) = 2|X | · e−nε2µX . (1.9)

Observe that δε(n) → 0 for fixed ε, ε > 0, and n → ∞.

Theorem 1.1. Suppose 0 ≤ ε ≤ µX , xn ∈ Tn
ε (PX), and Xn is emitted

by a DMS PX(·). We have

2−n(1+ε)H(X) ≤ Pn
X(xn) ≤ 2−n(1−ε)H(X) (1.10)

(1 − δε(n))2n(1−ε)H(X) ≤ |Tn
ε (PX)| ≤ 2n(1+ε)H(X) (1.11)

1 − δε(n) ≤ Pr[Xn ∈ Tn
ε (PX)] ≤ 1. (1.12)

Proof. Consider (1.10). For xn ∈ Tn
ε (PX), we have

Pn
X(xn) =

∏

a∈supp(PX)

PX(a)N(a|xn)

≤
∏

a∈supp(PX)

PX(a)nPX(a)(1−ε)

= 2
∑

a∈supp(PX ) nPX(a)(1−ε) log2 PX(a)

= 2−n(1−ε)H(X), (1.13)

where the inequality follows because, by the definition (1.7), typical
xn satisfy N(a|xn)/n ≥ PX(a)(1 − ε). One can similarly prove the left-
hand side of (1.10).

Next, consider (1.12). In the appendix of this section, we prove the
following result using the Chernoff bound:

Pr
[∣∣∣∣

N(a|Xn)
n

− PX(a)
∣∣∣∣ > ε PX(a)

]
≤ 2 · e−nε2µX , (1.14)

where 0 ≤ ε ≤ µX . We thus have

Pr[Xn /∈ Tn
ε (PX)] = Pr

[
⋃

a∈X

{∣∣∣∣
N(a|Xn)

n
− PX(a)

∣∣∣∣ > ε PX(a)
}]

≤
∑

a∈X
Pr
[∣∣∣∣

N(a|Xn)
n

− PX(a)
∣∣∣∣ > ε PX(a)

]

≤ 2|X | · e−nε2µX , (1.15)
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where we have used the union bound (see (A.5)) for the second step.
This proves the left-hand side of (1.12).

Finally, for (1.11) observe that

Pr[Xn ∈ Tn
ε (PX)] =

∑

xn∈T n
ε (PX)

Pn
X(xn)

≤ |Tn
ε (PX)|2−n(1−ε)H(X), (1.16)

where the inequality follows by (1.13). Using (1.15) and (1.16), we thus
have

|Tn
ε (PX)| ≥ (1 − δε(n))2n(1−ε)H(X). (1.17)

We similarly derive the right-hand side of (1.11).

1.4 Source Coding

The source coding problem is depicted in Figure 1.2. A DMS PX(·)
emits a sequence xn of symbols that are passed to an encoder. The
source encoder “compresses” xn into an index w and sends w to the
decoder. The decoder reconstructs xn from w as x̂n(w), and is said to
be successful if x̂n(w) = xn.

The source encoding can be done in several ways:

• Fixed-length to fixed-length coding (or block-to-block
coding).

• Fixed-length to variable-length coding (block-to-variable-
length coding).

• Variable-length to fixed-length coding (variable-length-to-
block coding).

• Variable-length to variable-length coding.

Fig. 1.2 The source coding problem.
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We will here consider only the first two approaches. For a block-to-
variable-length scheme, the number of bits transmitted by the encoder
depends on xn. We will consider the case where every source sequence
is assigned a unique index w. Hence, one can reconstruct xn perfectly.
Let L(xn) be the number of bits transmitted for xn. The goal is to
minimize the average rate R = E

[
L(XN )

]
/n.

For a block-to-block encoding scheme, the index w takes on one of
2nR indexes w, w = 1,2, . . . ,2nR, and we assume that 2nR is a positive
integer. The encoder sends exactly nR bits for every source sequence
xn, and the goal is to make R as small as possible. Observe that block-
to-block encoding might require the encoder to send the same w for
two different source sequences.

Suppose first that we permit no error in the reconstruction. We use
the block-to-variable-length encoder, choose an n and an ε, and assign
each sequence in Tn

ε (PX) a unique positive integer w. According to
(1.11), these indexes w can be represented by at most n(1 + ε)H(X) +
1 bits. Next, the encoder collects a sequence xn. If xn ∈ Tn

ε (PX), then
the encoder sends a “0” followed by the n(1 + ε)H(X) + 1 bits that
represent this sequence. If xn /∈ Tn

ε (PX), then the encoder sends a “1”
followed by n log2 |X | + 1 bits that represent xn. The average number
of bits per source symbol is the compression rate R, and it is upper
bounded by

R ≤ Pr[Xn ∈ Tn
ε (PX)] [(1 + ε)H(X) + 2/n]

+ Pr[Xn /∈ Tn
ε (PX)] (log2 |X | + 2/n)

≤ (1 + ε)H(X) + 2/n + δε(n)(log2 |X | + 2/n). (1.18)

But since δε(n) → 0 as n → ∞, we can transmit at any rate above
H(X) bits per source symbol. For example, if the DMS is binary with
PX(0) = 1 − PX(1) = 2/3, then we can transmit the source outputs
in a lossless fashion at any rate above H(X) ≈ 0.9183 bits per source
symbol.

Suppose next that we must use a block-to-block encoder, but that
we permit a small error probability in the reconstruction. Based on the
above discussion, we can transmit at any rate above (1 + ε)H(X) bits
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per source symbol with an error probability δε(n). By making n large,
we can make δε(n) as close to zero as desired.

But what about a converse result? Can one compress with a small
error probability, or even zero error probability, at rates below H(X)?
We will prove a converse for block-to-block encoders only, since the
block-to-variable-length case requires somewhat more work.

Consider Fano’s inequality (see Section A.10) which ensures us that

H2(Pe) + Pe log2(|X |n − 1) ≥ H(Xn|X̂n), (1.19)

where Pe = Pr[X̂n )= Xn]. Recall that there are at most 2nR different
sequences x̂n, and that x̂n is a function of xn. We thus have

nR ≥ H(X̂n)

= H(X̂n) − H(X̂n|Xn)

= I(Xn;X̂n)

= H(Xn) − H(Xn|X̂n)

= nH(X) − H(Xn|X̂n)

≥ n

[
H(X) − H2(Pe)

n
− Pe log2 |X |

]
, (1.20)

where the last step follows by (1.19). Since we require that Pe be zero,
or approach zero with n, we find that R ≥ H(X) for block-to-block
encoders with arbitrarily small positive Pe. This is the desired converse.

1.5 Jointly and Conditionally Typical Sequences

Let N(a,b|xn,yn) be the number of times the pair (a,b) occurs in the
sequence of pairs (x1,y1),(x2,y2), . . . ,(xn,yn). The jointly typical set
with respect to PXY (·) is simply

Tn
ε (PXY ) =

{
(xn,yn) :

∣∣∣∣
1
n

N(a,b|xn,yn) − PXY (a,b)
∣∣∣∣

≤ ε · PXY (a,b) for all (a,b) ∈ X × Y} . (1.21)

The reader can easily check that (xn,yn) ∈ Tn
ε (PXY ) implies both

xn ∈ Tn
ε (PX) and yn ∈ Tn

ε (PY ).
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Consider the conditional distribution PY |X(·) and define

Pn
Y |X(yn|xn) =

n∏

i=1

PY |X(yi|xi) (1.22)

Tn
ε (PXY |xn) = {yn : (xn,yn) ∈ Tn

ε (PXY )} . (1.23)

Observe that Tn
ε (PXY |xn) = ∅ if xn is not in Tn

ε (PX). We shall further
need the following counterpart of δε(n) in (1.9):

δε1,ε2(n) = 2|X ||Y|exp
(

−n · (ε2 − ε1)2

1 + ε1
· µXY

)
, (1.24)

where µXY = min(a,b)∈supp(PXY ) PXY (a,b) and 0 ≤ ε1 < ε2 ≤ 1. Note
that δε1,ε2(n) → 0 as n → ∞. In the Appendix, we prove the following
theorem that generalizes Theorem 1.1 to include conditioning.

Theorem 1.2. Suppose 0 ≤ ε1 < ε2 ≤ µXY , (xn,yn) ∈ Tn
ε1(PXY ), and

(Xn,Y n) was emitted by the DMS PXY (·). We have

2−nH(Y |X)(1+ε1) ≤ Pn
Y |X(yn|xn) ≤ 2−nH(Y |X)(1−ε1) (1.25)

(1 − δε1,ε2(n))2nH(Y |X)(1−ε2) ≤ |Tn
ε2(PXY |xn)| ≤ 2nH(Y |X)(1+ε2)(1.26)

1 − δε1,ε2(n) ≤ Pr
[
Y n ∈ Tn

ε2(PXY |xn) |Xn = xn
]

≤ 1. (1.27)

The following result follows easily from Theorem 1.2 and will be
extremely useful to us.

Theorem 1.3. Consider a joint distribution PXY (·) and suppose
0 ≤ ε1 < ε2 ≤ µXY , Y n is emitted by a DMS PY (·), and xn ∈ Tn

ε1(PX).
We have

(1 − δε1,ε2(n)) 2−n[I(X;Y )+2ε2H(Y )]

≤ Pr
[
Y n ∈ Tn

ε2(PXY |xn)
]

≤ 2−n[I(X;Y )−2ε2H(Y )]. (1.28)
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Proof. The upper bound follows by (1.25) and (1.26):

Pr
[
Y n ∈ Tn

ε2(PXY |xn)
]

=
∑

yn∈Tε2 (PXY |xn)

Pn
Y (yn)

≤ 2nH(Y |X)(1+ε2) 2−nH(Y )(1−ε2)

≤ 2−n[I(X;Y )−2ε2H(Y )]. (1.29)

The lower bound also follows from (1.25) and (1.26).

For small ε1 and ε2, large n, typical (xn,yn), and (Xn,Y n) emitted
by a DMS PXY (·), we thus have

Pn
Y |X(yn|xn) ≈ 2−nH(Y |X) (1.30)

|Tn
ε2(PXY |xn)| ≈ 2nH(Y |X) (1.31)

Pr
[
Y n ∈ Tn

ε2(PXY |xn) |Xn = xn
]

≈ 1 (1.32)

Pr
[
Y n ∈ Tn

ε2(PXY |xn)
]

≈ 2−nI(X;Y ). (1.33)

We remark that the probabilities in (1.27) and (1.28) (or (1.32) and
(1.33)) differ only in whether or not one conditions on Xn = xn.

Example 1.4. Suppose X and Y are independent, in which case the
approximations (1.32) and (1.33) both give

Pr
[
Y n ∈ Tn

ε2(PXY |xn)
]

≈ 1. (1.34)

Note, however, that the precise version (1.28) of (1.33) is trivial for large
n. This example shows that one must exercise caution when working
with the approximations (1.30)–(1.33).

Example 1.5. Suppose that X = Y so that (1.33) gives

Pr
[
Y n ∈ Tn

ε2(PXY |xn)
]

≈ 2−nH(X). (1.35)

This result should not be surprising because |Tn
ε2(PX)| ≈ 2nH(X) and

we are computing the probability of the event Xn = xn for some xn ∈
Tn

ε1(PXY ) (the fact that ε2 is larger than ε1 does not play a role for
large n).
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1.6 Appendix: Proofs

Proof of Inequality (1.14)

We prove the bound (1.14). Consider first PX(a) = 0 for which we have

Pr
[
N(a|Xn)

n
> PX(a)(1 + ε)

]
= 0. (1.36)

Next, suppose that PX(a) > 0. Using the Chernoff bound, we have

Pr
[
N(a|Xn)

n
> PX(a)(1 + ε)

]
≤ Pr

[
N(a|Xn)

n
≥ PX(a)(1 + ε)

]

≤ E
[
eνN(a|Xn)/n

]
e−νPX(a)(1+ε)

=

[
n∑

m=0

Pr[N(a|Xn) = m]eνm/n

]
e−νPX(a)(1+ε)

=

[
n∑

m=0

(
n

m

)
PX(a)m(1 − PX(a))n−meνm/n

]
e−νPX(a)(1+ε)

=
[
(1 − PX(a)) + PX(a)eν/n

]n
e−νPX(a)(1+ε). (1.37)

(1.38)

Optimizing (1.38) with respect to ν, we find that

ν = ∞ if PX(a)(1 + ε) ≥ 1
eν/n = (1−PX(a))(1+ε)

1−PX(a)(1+ε) if PX(a)(1 + ε) < 1.
(1.39)

In fact, the Chernoff bound correctly identifies the probabilities to be
0 and PX(a)n for the cases PX(a)(1 + ε) > 1 and PX(a)(1 + ε) = 1,
respectively. More interestingly, for PX(a)(1 + ε) < 1 we insert (1.39)
into (1.38) and obtain

Pr
[
N(a|Xn)

n
≥ PX(a)(1 + ε)

]
≤ 2−nD(PB‖PA), (1.40)

where A and B are binary random variables with

PA(0) = 1 − PA(1) = PX(a)
PB(0) = 1 − PB(1) = PX(a)(1 + ε). (1.41)



1.6 Appendix: Proofs 279

We can write PB(0) = PA(0)(1 + ε) and hence

D (PB‖PA) = PA(0)(1 + ε) log2(1 + ε)

+ [1 − PA(0)(1 + ε)] log2

(
1 − PA(0)(1 + ε)

1 − PA(0)

)
. (1.42)

We wish to further simplify (1.42). The first two derivatives of (1.42)
with respect to ε are

dD (PB‖PA)
dε

= PA(0) log2

(
(1 − PA(0))(1 + ε)
(1 − PA(0))(1 + ε)

)
(1.43)

d2D (PB‖PA)
dε2

=
PA(0) log2(e)

(1 + ε)[1 − PA(0)(1 + ε)]
. (1.44)

We find that (1.43) is zero for ε = 0 and we can lower bound (1.44) by
PX(a) log2(e) for 0 ≤ ε ≤ µX . The second derivative of D(PB‖PA) with
respect to ε is thus larger than PX(a) log2(e) and so we have

D (PB‖PA) ≥ ε2 · PA(0) log2(e) (1.45)

for 0 ≤ ε ≤ µX . Combining (1.40) and (1.45) we arrive at

Pr
[
N(a|Xn)

n
≥ PX(a)(1 + ε)

]
≤ e−nε2PX(a). (1.46)

One can similarly bound

Pr
[
N(a|Xn)

n
≤ PX(a)(1 − ε)

]
≤ e−nε2PX(a). (1.47)

Note that (1.46) and (1.47) are valid for all a ∈ X including a with
PX(a) = 0. However, the event in (1.14) has a strict inequality so we
can improve the above bounds for the case PX(a) = 0 (see (1.36)). This
observation lets us replace PX(a) in (1.46) and (1.47) with µX and the
result is (1.14).
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Proof of Theorem 1.2

Suppose that (xn,yn) ∈ Tn
ε1(PXY ). We prove (1.25) by bounding

Pn
Y |X(yn|xn) =

∏

(a,b)∈supp(PXY )

PY |X(b|a)N(a,b|xn,yn)

≤
∏

(a,b)∈supp(PXY )

PY |X(b|a)nPXY (a,b)(1−ε1)

= 2n(1−ε1)
∑

(a,b)∈supp(PXY ) PXY (a,b) log2 PY |X(b|a)

= 2−n(1−ε1)H(Y |X). (1.48)

This gives the lower bound in (1.25) and the upper bound is proved
similarly.

Next, suppose that (xn,yn) ∈ Tn
ε (PXY ) and (Xn,Y n) was emitted

by the DMS PXY (·). We prove (1.27) as follows.
Consider first PXY (a,b) = 0 for which we have

Pr
[
N(a,b|Xn,Y n)

n
> PXY (a,b)(1 + ε)

]
= 0. (1.49)

Now consider PXY (a,b) > 0. If N(a|xn) = 0, then N(a,b|xn,yn) = 0
and

Pr
[

N(a,b|Xn,Y n)
n

> PXY (a,b)(1 + ε)
∣∣∣∣X

n = xn

]
= 0. (1.50)

More interestingly, if N(a|xn) > 0 then the Chernoff bound gives

Pr
[

N(a,b|Xn,Y n)
n

> PXY (a,b)(1 + ε)
∣∣∣∣X

n = xn

]

≤ Pr
[

N(a,b|Xn,Y n)
n

≥ PXY (a,b)(1 + ε)
∣∣∣∣X

n = xn

]

= Pr
[

N(a,b|Xn,Y n)
N(a|xn)

≥ PXY (a,b)
N(a|xn)/n

(1 + ε)
∣∣∣∣X

n = xn

]
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≤ E
[
eνN(a,b|Xn,Y n)/N(a|xn)

∣∣∣Xn = xn
]
e−ν

PXY (a,b)(1+ε)
N(a|xn)/n

=




N(a|xn)∑

m=0

(
N(a|xn)

m

)
PY |X(b|a)m(1 − PY |X(b|a))N(a|xn)−m

eνm/N(a|xn)
]
e−ν

PXY (a,b)(1+ε)
N(a|xn)/n

=
[
(1 − PY |X(b|a)) + PY |X(b|a)eν/N(a|xn)

]N(a|xn)
e−ν

PXY (a,b)(1+ε)
N(a|xn)/n .

(1.51)

Minimizing (1.51) with respect to ν, we find that

ν = ∞ if PXY (a,b)(1 + ε) ≥ N(a|xn)/n

eν/N(a|xn) = PX(a)(1−PY |X(b|a))(1+ε)
N(a|xn)/n−PXY (a,b)(1+ε) if PXY (a,b)(1 + ε) < N(a|xn)/n.

(1.52)

Again, the Chernoff bound correctly identifies the probabilities to
be 0 and PY |X(b|a)n for the cases PXY (a,b)(1 + ε) > N(a|xn)/n
and PXY (a,b)(1 + ε) = N(a|xn)/n, respectively. More interestingly, for
PXY (a,b)(1 + ε) < N(a|xn)/n we insert (1.52) into (1.51) and obtain

Pr
[

N(a,b|Xn)
n

≥ PXY (a,b)(1 + ε)
∣∣∣∣X

n = xn

]
≤ 2−N(a|xn)D(PB‖PA),

(1.53)
where A and B are binary random variables with

PA(0) = 1 − PA(1) = PY |X(b|a)

PB(0) = 1 − PB(1) =
PXY (a,b)
N(a|xn)/n

(1 + ε). (1.54)

We would like to have the form PB(0) = PA(0)(1 + ε̃) and compute

ε̃ =
PX(a)

N(a|xn)/n
(1 + ε) − 1. (1.55)

We can now use (1.41)–(1.46) to arrive at

Pr
[

N(a,b|Xn,Y n)
n

≥ PXY (a,b)(1 + ε)
∣∣∣∣X

n = xn

]

≤ e−N(a|xn)ε̃2PY |X(b|a) (1.56)
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as long as ε ≤ minb:(a,b)∈supp(PXY ) PY |X(b|a). Now to guarantee that ε̃2

is positive, we must require that xn is “more than” ε-letter typical, i.e.,
we must choose xn ∈ Tε1(PX), where 0 ≤ ε1 < ε. Inserting N(a|xn)/n ≥
(1 + ε1)PX(a) into (1.56), we have

Pr
[

N(a,b|Xn,Y n)
n

≥ PXY (a,b)(1 + ε)
∣∣∣∣X

n = xn

]

≤ e
−n

(ε−ε1)2

1+ε1
PXY (a,b) (1.57)

for 0 ≤ ε1 < ε ≤ µXY (we could allow ε to be up to minb:(a,b)∈supp(PXY )
PY |X(b|a) but we ignore this subtlety). One can similarly bound

Pr
[

N(a,b|Xn,Y n)
n

≤ PXY (a,b)(1 − ε)
∣∣∣∣X

n = xn

]

≤ e
−n

(ε−ε1)2

1+ε1
PXY (a,b)

. (1.58)

As for the unconditioned case, note that (1.57) and (1.58) are valid for
all (a,b) including (a,b) with PXY (a,b) = 0. However, the event we are
interested in has a strict inequality so that we can improve the above
bounds for the case PXY (a,b) = 0 (see (1.49)). We can thus replace
PXY (a,b) in (1.57) and (1.58) with µXY and the result is

Pr
[∣∣∣∣

N(a,b|Xn,Y n)
n

− PXY (a,b)
∣∣∣∣ > ε PXY (a,b)

∣∣∣∣X
n = xn

]

≤ 2 · e
−n

(ε−ε1)2

1+ε1
µXY . (1.59)

for 0 ≤ ε1 < ε ≤ µXY (we could allow ε to be up to µY |X =
min(a,b)∈supp(PXY ) PY |X(b|a) but, again, we ignore this subtlety). We
thus have

Pr[Y n /∈ Tn
ε (PXY |xn)|Xn = xn]

= Pr




⋃

a,b

{∣∣∣∣
N(a,b|Xn)

n
− PXY (a,b)

∣∣∣∣ > ε PXY (a,b)
}∣∣∣∣∣∣

Xn = xn
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≤
∑

a,b

Pr
[∣∣∣∣

N(a,b|Xn,Y n)
n

− PXY (a,b)
∣∣∣∣ > ε PXY (a,b)

∣∣∣∣X
n = xn

]

≤ 2|X ||Y| · e
−n

(ε−ε1)2

1+ε1
µXY , (1.60)

where we have used the union bound for the last inequality. The result
is the left-hand side of (1.27).

Finally, for xn ∈ Tn
ε1(PX) and 0 ≤ ε1 < ε ≤ µXY we have

Pr[Y n ∈ Tn
ε (PXY |xn)|Xn = xn] =

∑

yn∈T n
ε (PXY |xn)

Pn
Y |X(yn|xn)

≤ |Tn
ε (PXY |xn)|2−n(1−ε)H(Y |X),

(1.61)

where the inequality follows by (1.48). We thus have

|Tn
ε (PXY |xn)| ≥ (1 − δε1,ε(n))2n(1−ε)H(Y |X). (1.62)

We similarly have

|Tn
ε (PXY |xn)| ≤ 2n(1+ε)H(Y |X). (1.63)



2
Rate-Distortion and Multiple Descriptions

2.1 Problem Description

Rate distortion theory is concerned with quantization or lossy com-
pression. Consider the problem shown in Figure 2.1. A DMS PX(·)
with alphabet X emits a sequence xn that is passed to a source
encoder. The encoder “quantizes” xn into one of 2nR sequences x̂n(w),
w = 1,2, . . .2nR, and sends the index w to the decoder (we assume that
2nR is a positive integer in the remainder of this survey). Finally, the
decoder puts out x̂n(w) that is called a reconstruction of xn. The let-
ters x̂i take on values in the alphabet X̂ , which is often the same as
X but could be different. The goal is to ensure that a non-negative
and real-valued distortion dn(xn, x̂n) is within some specified value D.
A less restrictive version of the problem requires only that the average
distortion E

[
dn(Xn, X̂n)

]
is at most D.

The choice of distortion function dn(·) depends on the application.
For example, for a DMS a natural distortion function is the normalized
Hamming distance, i.e., we set

dn(xn, x̂n) =
1
n

n∑

i=1

d(xi, x̂i), (2.1)

284
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Fig. 2.1 The rate distortion problem.

where d(x, x̂) = 0 if x̂ = x, and d(x, x̂) = 1 if x̂ )= x. For real sources, a
natural choice might be the mean squared error

dn(xn, x̂n) =
1
n

n∑

i=1

(x − xi)2. (2.2)

Note that for binary (0,1) sources both (2.1) and (2.2) are the same.
Note further that both (2.1) and (2.2) are averages of per-letter distor-
tion functions. Such a choice is not appropriate for many applications,
but we will consider only such distortion functions. We do this for
simplicity, tractability, and to gain insight into what can be accom-
plished in general. We further assume that d(·) is upper-bounded by
some number dmax.

The rate distortion (RD) problem is the following: find the set of
pairs (R,D) that one can approach with source encoders for sufficiently
large n (see [55, Part V], [57]). Note that we ignore the practical difficul-
ties associated with large block lengths. However, the theory developed
below provides useful bounds on the distortion achieved by finite length
codes as well. The smallest rate R as a function of the distortion D is
called the rate distortion function. The smallest D as a function of R
is called the distortion rate function.

2.2 An Achievable RD Region

We present a random code construction in this section, and analyze
the set of (R,D) that it can achieve. Suppose we choose a “channel”
PX̂|X(·) and compute PX̂(·) as the marginal distribution of PXX̂(·).

Code Construction: Generate 2nR codewords x̂n(w), w = 1,2, . . . ,2nR,
by choosing each of the n · 2nR symbols x̂i(w) in the code book inde-
pendently at random using PX̂(·) (see Figure 2.2).
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Fig. 2.2 A code book for the RD problem.

Encoder: Given xn, try to find a codeword x̂n(w) such that
(xn, x̂n(w)) ∈ Tn

ε (PXX̂). If one is successful, send the corresponding
index w. If one is unsuccessful, send w = 1.
(Note: the design of the code book has so far ignored the distortion
function d(·). The design will include d(·) once we optimize over the
choice of PX̂|X(·).)

Decoder: Put out the reconstruction x̂n(w).

Analysis: We bound E
[
dn(Xn, X̂n)

]
as follows: we partition the sample

space into three disjoint events

E1 =
{
Xn /∈ Tn

ε1(PX)
}

(2.3)

E2 = Ec
1

⋂





2nR⋂

w=1

{
(Xn, X̂n(w)) /∈ Tε(PXX̂)

}



 (2.4)

E3 = (E1 ∪ E2)c , (2.5)

where Ec
1 is the complement of E1. Next, we apply the Theorem on

Total Expectation (see Section A.3)

E
[
dn(Xn, X̂n)

]
=

3∑

i=1

Pr[Ei]E
[
dn(Xn, X̂n)|Ei

]
. (2.6)

Let 0 < ε1 < ε ≤ µXX̂ , where we recall from Section 1.5 that µXX̂ =
min(a,b)∈supp(PXX̂) PXX̂(a,b).

(1) Suppose that Xn /∈ Tn
ε1(PX), in which case we upper

bound the average distortion by dmax. But recall that
Pr
[
Xn /∈ Tn

ε1(PX)
]

≤ δε1(n), and δε1(n) approaches zero
exponentially in n if ε1 > 0.
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(2) Suppose that Xn = xn and xn ∈ Tn
ε1(PX) but none of the

X̂n(w) satisfies

(xn, X̂n(w)) ∈ Tn
ε (PXX̂). (2.7)

We again upper bound the average distortion by dmax. The
events (2.7), w = 1,2, . . . ,2nR, are independent since each
x̂n(w) was generated without considering xn or the other
codewords. The probability Pe(xn) that none of the code-
words are satisfactory is thus

Pe(xn) = Pr




2nR⋂

w=1

{
(xn, X̂n(w)) /∈ Tε(PXX̂)

}




=
[
1 − Pr

[
(xn, X̂n) ∈ Tn

ε (PXX̂)
]]2nR

≤
[
1 − (1 − δε1,ε(n))2−n[I(X;X̂)+2εH(X̂)]]2nR

≤ exp
(

− (1 − δε1,ε(n))2n[R−I(X;X̂)−2εH(X̂)]), (2.8)

where the first inequality follows by Theorem 1.3, and
the second inequality by (1 − x)m ≤ e−mx. Inequality (2.8)
implies that we can choose large n and

R > I(X;X̂) + 2εH(X̂) (2.9)

to drive the error probability to zero. In addition, observe
that the bound is valid for any xn in Tn

ε1(PX), and the error
probability decreases doubly exponentially in n. Denote the
resulting error probability as δε1,ε(n,R).

(3) Suppose Xn = xn, xn ∈ Tn
ε1(PX), and we find a x̂n(w) with

(xn, x̂n(w)) ∈ Tn
ε (PXX̂). The distortion is

dn(xn, x̂n(w)) =
1
n

n∑

i=1

d(xi, x̂i(w))

=
1
n

∑

a,b

N(a,b|xn, x̂n(w)) d(a,b)
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≤
∑

a,b

PXX̂(a,b)(1 + ε) d(a,b)

≤ E
[
d(X,X̂)

]
+ εdmax, (2.10)

where the first inequality follows by the definition (1.21).
Combining the above results using (2.6), we have

E
[
dn(Xn, X̂n)

]
≤ E

[
d(X,X̂)

]
+ (δε1(n) + δε1,ε(n,R) + ε)dmax.

(2.11)

As a final step, we choose small ε, large n, R satisfying (2.9), and PXX̂
for which E

[
d(X,X̂)

]
< D. A random code thus achieves the rates R

satisfying

R > min
PX̂|X : E[d(X,X̂)]<D

I(X;X̂). (2.12)

Alternatively, we say that a random code approaches the rate

R(D) = min
PX̂|X : E[d(X,X̂)]≤D

I(X;X̂). (2.13)

The words achieves and approaches are often used interchangeably both
here and in the literature.

We remark that there is a subtlety in the above argument: the
expectation E

[
dn(Xn, X̂n)

]
is performed over both the source sequence

and the code book. The reader might therefore wonder whether there
is one particular code book for which the average distortion is D if the
average distortion over all code books is D. A simple argument shows
that this is the case: partition the sample space into the set of possible
code books, and the Theorem on Total Expectation tells us that at
least one of the codebooks must have a distortion at most the average.

2.3 Discrete Alphabet Examples

As an example, consider the binary symmetric source (BSS) with the
Hamming distortion function and desired average distortion D, where
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D ≤ 1/2. We then require Pr
[
X )= X̂

]
≤ D, and can bound

I(X;X̂) = H(X) − H(X|X̂)

= 1 − H(X ⊕ X̂|X̂)

≥ 1 − H(X ⊕ X̂)
≥ 1 − H2(D), (2.14)

where the last step follows because E = X ⊕ X̂ is binary with PE(1) ≤
D, and we recall that H2(x) = −x log2(x) − (1 − x) log2(1 − x) is the
binary entropy function. Furthermore, we can “achieve” R(D) = 1 −
H2(D) by choosing PX̂|X(·) to be the binary symmetric channel (BSC)
with crossover probability D.

As a second example, consider again the BSS but with X̂ = {0,1,∆},
where ∆ represents an erasure, and where we use the erasure distortion
function

d(x, x̂) =






0, if x = x̂
1, if x̂ = ∆
∞, if x̂ = x ⊕ 1.

(2.15)

(Note that we are permitting an unbounded distortion; this causes
no difficulties here.) To achieve finite distortion D, we must choose
PX̂|X(1|0) = PX̂|X(0|1) = 0 and Pr

[
X̂ = ∆

]
≤ D. We thus have

I(X;X̂) = 1 − H(X|X̂)

= 1 −
∑

b∈X̂

PX̂(b)H(X|X̂ = b)

≥ 1 − D. (2.16)

We can achieve R(D) = 1 − D by simply sending w = x(1−D)n. The
decoder puts out as its reconstruction x̂n = [x(1−D)n ∆Dn ], where∆ m

is a string of m successive∆s.

2.4 Gaussian Source and Mean Squared Error Distortion

Suppose that we can approach the rate (2.13) for the memoryless Gaus-
sian source with mean squared error distortion (we will not prove this
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here, see [18, Sec. 9]). We require E
[
(X − X̂)2

]
≤ D, and bound

I(X;X̂) = h(X) − h(X|X̂)

=
1
2

log(2πeσ2) − h(X − X̂|X̂)

≥ 1
2

log(2πeσ2) − h(X − X̂)

≥ 1
2

log(2πeσ2) − 1
2

log
(
2πeE[(X − X̂)2]

)

≥ 1
2

log(2πeσ2) − 1
2

log(2πeD)

=
1
2

log(σ2/D), (2.17)

where σ2 is the source variance, and where the second inequality fol-
lows by the maximum entropy theorem (see Section B.5.3 and [18,
p. 234]). We can achieve R(D) = 1

2 log(σ2/D) by choosing PX|X̂(·)
(note that this is not PX̂|X(·)) to be the additive white Gaussian
noise (AWGN) channel with noise variance D. Alternatively, we can
achieve the distortion D(R) = σ2 exp(−2R), i.e., we can gain 6 dB per
quantization bit.

2.5 Two Properties of R(D)

We develop two properties of the function R(D) in (2.13). First, it is
clear that R(D) is a non-increasing function with D because the set of
PX̂|X(·) does not shrink by increasing D. Second, we prove that R(D)
is convex in D [57], [18, Lemma 13.4.1 on p. 349].

Consider two distinct points (R1,D1) and (R2,D2) on the boundary
of R(D), and suppose the channels PX̂1|X(·) and PX̂2|X(·) achieve these
respective points. Consider also the distribution defined by

PX̂3|X(a|b) = λPX̂1|X(a|b) + (1 − λ)PX̂2|X(a|b) (2.18)

for all a,b, where 0 ≤ λ ≤ 1. The distortion with PX̂3|X is simply
D3 = λD1 + (1 − λ)D1. The new mutual information, however, is less
than the convex combination of mutual informations, i.e., we have (see
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Section A.11)

I(X;X̂3) ≤ λI(X;X̂1) + (1 − λ)I(X;X̂2) (2.19)

as follows by the convexity of I(X;Y ) in PY |X(·) when PX(·) is held
fixed [18, p. 31]. We thus have

R(λD1 + (1 − λ)D2) = R(D3)

≤ I(X;X̂3)

≤ λI(X;X̂1) + (1 − λ)I(X;X̂2)
= λR(D1) + (1 − λ)R(D2). (2.20)

Thus, R(D) is a convex function of D.

2.6 A Lower Bound on the Rate given the Distortion

We show that R(D) in (2.13) is the rate distortion function. Thus, the
random coding scheme described in Section 2.2 is rate-optimal given D.

Suppose we are using some encoder and decoder for which
E
[
dn(Xn, X̂n)

]
≤ D. Recall that the code book has 2nR sequences x̂n,

and that x̂n is a function of xn. We thus have

nR ≥ H(X̂n)

= H(X̂n) − H(X̂n|Xn)

= I(Xn;X̂n)

= H(Xn) − H(Xn|X̂n)

=
n∑

i=1

H(Xi) − H(Xi|X̂nXi−1)

≥
n∑

i=1

H(Xi) − H(Xi|X̂i)

=
n∑

i=1

I(Xi;X̂i). (2.21)
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We use (2.13) and the convexity (2.20) to continue the chain of inequal-
ities (2.21):

nR ≥
n∑

i=1

R
(
E
[
d(Xi, X̂i)

])

≥ nR

(
1
n

n∑

i=1

E
[
d(Xi, X̂i)

]
)

= nR
(
E
[
dn(Xn, X̂n)

])

≥ nR(D). (2.22)

Thus, the rate must be larger than R(D), and this is called a converse
result. But we can also achieve R(D) by (2.13), so the rate distortion
function is R(D).

2.7 The Multiple Description Problem

A generalization of the RD problem is depicted in Figure 2.3, and is
known as the multiple-description (MD) problem. A DMS again puts
out a sequence of symbols xn, but now the source encoder has two
or more channels through which to send indexes W1,W2, . . . ,WL (also
called “descriptions” of xn). We will concentrate on two channels only,
since the following discussion can be extended in a straightforward
way to more than two channels. For two channels, the encoder might
quantize xn to one of 2nR1 sequences x̂n

1 (w1), w1 = 1,2, . . . ,2nR1 , and to
one of 2nR2 sequences x̂n

2 (w2), w2 = 1,2, . . . ,2nR2 . The indexes w1 and
w2 are sent over the respective channels 1 and 2. As another possibility,
the encoder might quantize xn to one of 2n(R1+R2) sequences x̂n

12(w1,w2)

SinkDecoder
Source

EncoderSource

Fig. 2.3 The multiple description problem.
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and send w1 and w2 over the respective channels 1 and 2. There are,
in fact, many other strategies that one can employ.

Suppose both w1 and w2 are always received by the decoder. We
then simply have the RD problem. The MD problem becomes differ-
ent than the RD problem by modeling the individual channels through
which W1 and W2 pass as being either noise-free or completely noisy,
i.e., the decoder either receives W1 (or W2) over channel 1 (or chan-
nel 2), or it does not. This scenario models the case where a source
sequence, e.g., an audio or video file, is sent across a network in several
packets. These packets may or may not be received, or may be received
with errors, in which case the decoder discards the packet.

The decoder encounters one of three interesting situations: either
W1 or W2 is received, or both are received. There are, therefore, three
interesting average distortions:

D1 =
1
n

n∑

i=1

E
[
d1(Xi, X̂1i(W1))

]
(2.23)

D2 =
1
n

n∑

i=1

E
[
d2(Xi, X̂2i(W2))

]
(2.24)

D12 =
1
n

n∑

i=1

E
[
d12(Xi, X̂(12)i(W1,W2)

]
, (2.25)

where X̂n
k , k = 1,2,12, is the reconstruction of Xn when only W1 is

received (k = 1), only W2 is received (k = 2), and both W1 and W2 are
received (k = 12). Observe that the distortion functions might depend
on k.

The source encoder usually does not know ahead of time which W#

will be received. The MD problem is, therefore, determining the set
of 5-tuples (R1,R2,D1,D2,D12) that can be approached with source
encoders for any length n (see [22]).

2.8 A Random Code for the MD Problem

We present a random code construction that generalizes the scheme of
Section 2.2. We choose a PX̂1X̂2X̂12|X(·) and compute PX̂1

(·), PX̂2
(·),

and PX̂12|X̂1X̂2
(·) as marginal distributions of PXX̂1X̂2X̂12

(·).
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Code Construction: Generate 2nR1 codewords x̂n
1 (w1), w1 =

1,2, . . . ,2nR1 , by choosing each of the n · 2nR1 symbols x̂1i(w1)
at random according to PX̂1

(·). Similarly, generate 2nR2 codewords
x̂n

2 (w2), w2 = 1,2, . . . ,2nR2 , by using PX̂2
(·). Finally, for each pair

(w1,w2), generate one codeword x̂n
12(w1,w2) by choosing its ith symbol

at random according to PX̂12|X̂1X̂2
(·|x̂1i, x̂2i).

Encoder: Given xn, try to find a triple (x̂n
1 (w1), x̂n

2 (w2), x̂n
12(w1,w2))

such that

(xn, x̂n
1 (w1), x̂n

2 (w2), x̂n
12(w1,w2)) ∈ Tn

ε (PXX̂1X̂2X̂12
).

If one finds such a codeword, send w1 across the first channel and w2
across the second channel. If one is unsuccessful, send w1 = w2 = 1.

Decoder: Put out x̂n
1 (w1) if only w1 is received. Put out x̂n

2 (w2) if only
w2 is received. Put out x̂n

12(w1,w2) if both w1 and w2 are received.

Analysis: One can again partition the sample space as in Section 2.2.
There is one new difficulty: one cannot claim that the triples
(x̂n

1 (w′
1), x̂n

2 (w′
2), x̂n

12(w′
1,w

′
2)) and (x̂n

1 (w1), x̂n
2 (w2), x̂n

12(w1,w2)) are
independent if (w′

1,w
′
2) )= (w1,w2). The reason is that one might

encounter w′
1 = w1, w′

2 )= w2 or w′
2 = w2, w′

1 )= w1. We refer to
Section 7.10 and [64] for one approach for dealing with this problem.
The resulting MD region is the set of (R1,R2,D1,D2,D12) satisfying

R1 ≥ I(X;X̂1)

R2 ≥ I(X;X̂2)

R1 + R2 ≥ I(X;X̂1X̂2X̂12) + I(X̂1;X̂2)

Dk ≥ E
[
dk(X;X̂k)

]
for k = 1,2,12, (2.26)

where PX̂1X̂2X̂12|X(·) is arbitrary. This region was shown to be achiev-
able by El Gamal and Cover in [22]. The current best region for two
channels is due to Zhang and Berger [75].
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As an example, consider again the BSS and the erasure distortion
function (2.15). An outer bound on the MD region is

R1 ≥ I(X;X̂1) ≥ 1 − D1

R2 ≥ I(X;X̂2) ≥ 1 − D2

R1 + R2 ≥ I(X;X̂1X̂2X̂12) ≥ 1 − D12, (2.27)

which can be derived from the RD function, and the same steps as
in (2.16). But for any D1, D2, and D12, we can achieve all rates and
distortions in (2.27) as follows. If 1 − D12 ≤ (1 − D1) + (1 − D2), send
w1 = x(1−D1)n and w2 = xj

i = [xi,xi+1, . . . ,xj ], where i = (1 − D1)n +
1 and j = (1 − D1)n + (1 − D2)n. If 1 − D12 > (1 − D1) + (1 − D2),
choose one of two strategies to achieve the two corner points of (2.27).
The first strategy is to send w1 = x(1−D1)n and w2 = xj

i , where i =
(1 − D1)n + 1 and j = (1 − D12)n. For the second strategy, swap the
indexes 1 and 2 of the first strategy. One can achieve any point inside
(2.27) by time-sharing these two strategies.

Finally, we remark that the MD problem is still open, even for
only two channels! Fortunately, the entire MD region is known for the
Gaussian source and squared error distortion [47]. But even for this
important source and distortion function the problem is still open for
more than two channels [50, 51, 64, 65].
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Capacity–Cost

3.1 Problem Description

The discrete memoryless channel (DMC) is the basic model for channel
coding, and it is depicted in Figure 3.1. A source sends a message w,
w ∈ {1,2, . . . ,2nR}, to a receiver by mapping it into a sequence xn in X n.
We assume that the messages are equiprobable for now. The channel
PY |X(·) puts out yn, yn ∈ Yn, and the decoder maps yn to its estimate
ŵ of w. The goal is to find the maximum rate R for which one can make
Pe = Pr[Ŵ )= W ] arbitrarily close to zero (but not necessarily exactly
zero). This maximum rate is called the capacity C.

We refine the problem by adding a cost constraint. Suppose that
transmitting the sequence xn and receiving the sequence yn incurs a
cost of sn(xn,yn) units. In a way reminiscent of the rate-distortion
problem, we require the average cost E [sn(Xn,Y n)] to be at most some
specified value S. We further consider only real-valued cost functions
sn(·) that are averages of a per-letter cost function s(·):

sn(xn,yn) =
1
n

n∑

i=1

s(xi,yi). (3.1)

296
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Source
Message

Channel

SinkDecoderEncoder

Fig. 3.1 The capacity–cost problem.

We further assume that s(·) is upper-bounded by some number smax.
The largest rate C as a function of the cost S is called the capacity cost
function, and is denoted C(S).

As an example, suppose we are transmitting data over an optical
channel with binary (0,1) inputs and outputs, and where the transmis-
sion of a 1 costs s(1,y) = E units of energy for any y, while transmitting
a 0 costs s(0,y) = 0 units of energy for any y. A cost constraint with
0 ≤ S < E will bias the best transmission scheme toward sending the
symbol 1 less often.

3.2 Data Processing Inequalities

Suppose X − Y − Z forms a Markov chain, i.e., we have I(X;Z|Y ) = 0.
Then the following data processing inequalities are valid and are proved
in the appendix of this section:

I(X;Z) ≤ I(X;Y ) and I(X;Z) ≤ I(Y ;Z). (3.2)

Second, suppose Y1 and Y2 are the respective outputs of a channel
PY |X(·) with inputs X1 and X2. In the appendix of this section, we
show that

D(PY1‖PY2) ≤ D(PX1‖PX2). (3.3)

3.3 Applications of Fano’s Inequality

Suppose that we have a message W with H(W ) = nR so that we can
represent W by a string of nR bits V1,V2, . . . ,VnR (as usual, for sim-
plicity we assume that nR is an integer). Consider any channel coding
problem where W (or V nR) is to be transmitted to a sink, and is esti-
mated as Ŵ (or V̂ nR). We wish to determine properties of, and relations
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between, the block error probability

Pe = Pr[Ŵ )= W ] (3.4)

and the average bit error probability

Pb =
1

nR

nR∑

i=1

Pr[V̂i )= Vi]. (3.5)

We begin with Pe. Using Fano’s inequality (see Section A.10) we
have

H2(Pe) + Pe log2(|W|− 1) ≥ H(W |Ŵ ), (3.6)

where the alphabet size |W| can be assumed to be at most 2nR because
V nR represents W . We thus have

H2(Pe) + PenR ≥ H(W ) − I(W ;Ŵ ) (3.7)

and, using H(W ) = nR, we have

nR ≤ I(W ;Ŵ ) + H2(Pe)
1 − Pe

. (3.8)

This simple bound shows that we require nR ≤ I(W ;Ŵ ) if Pe is to be
made small. Of course, (3.8) is valid for any choice of Pe.

Consider next Pb for which we bound

H2(Pb) = H2

(
1

nR

nR∑

i=1

Pr[V̂i )= Vi]

)

≥ 1
nR

nR∑

i=1

H2(Pr[V̂i )= Vi])

≥ 1
nR

nR∑

i=1

H(Vi|V̂i), (3.9)
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where the second step follows by the concavity of H2(·), and the third
step by Fano’s inequality. We continue the chain of inequalities as

H2(Pb) ≥ 1
nR

nR∑

i=1

H(Vi|V i−1V̂ nR)

=
1

nR
H(V nR|V̂ nR)

=
1

nR

(
H(V nR) − I(V nR; V̂ nR)

)

= 1 − I(W ;Ŵ )
nR

. (3.10)

Alternatively, we have the following counterpart to (3.8):

nR ≤ I(W ;Ŵ )
1 − H2(Pb)

. (3.11)

We thus require nR ≤ I(W ;Ŵ ) if Pb is to be made small. We further
have the following relation between Pb and the average block error
probability Pe:

Pb ≤ Pe ≤ nPb. (3.12)

Thus, if Pb is lower bounded, so is Pe. Similarly, if Pe is small, so is Pb.
This is why achievable coding theorems should upper bound Pe, while
converse theorems should lower bound Pb. For example, a code that
has large Pe might have very small Pb.

3.4 An Achievable Rate

We construct a random code book for the DMC with cost constraint
S. We begin by choosing a distribution PX(·).

Code Construction: Generate 2nR codewords xn(w), w = 1,2, . . . ,2nR,
by choosing the n · 2nR symbols xi(w), i = 1,2, . . . ,n, independently
using PX(·).

Encoder: Given w, transmit xn(w).

Decoder: Given yn, try to find a w̃ such that (xn(w̃),yn) ∈ Tn
ε (PXY ). If

there is one or more such w̃, then choose one as ŵ. If there is no such
w̃, then put out ŵ = 1.
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Analysis: We split the analysis into several parts and use the Theorem
on Total Expectation as in Section 2.2. Let 0 < ε1 < ε2 < ε ≤ µXY .

(1) Suppose that Xn(w) /∈ Tn
ε1(PX), in which case we upper

bound the average cost by smax. Recall from Theorem 1.1
that Pr

[
Xn(w) /∈ Tn

ε1(PX)
]

≤ δε1(n), and δε1(n) approaches
zero exponentially in n if ε1 > 0.

(2) Suppose that Xn(w) = xn(w) and xn(w) ∈ Tn
ε1(PX) but

(xn(w),Y n) /∈ Tn
ε2(PXY ). We again upper bound the average

cost by smax. Using Theorem 1.2, the probability of this event
is upper bounded by δε1,ε2(n), and δε1,ε2(n) approaches zero
exponentially in n if ε1 ≥ 0 and ε2 > 0.

(3) Suppose (xn(w),yn) ∈ Tn
ε2(PXY ), but that we also find a w̃ )=

w such that (xn(w̃),yn) ∈ Tn
ε (PXY ). Using Theorem 1.3, the

probability of this event is

Pe(w) = Pr




⋃

w̃ '=w

{(Xn(w̃),yn) ∈ Tε(PXY )}





≤
∑

w̃ '=w

Pr[(Xn(w̃),yn) ∈ Tε(PXY )]

≤ (2nR − 1)2−n[I(X;Y )−2εH(X)], (3.13)

where the first inequality follows by the union bound
(see (A.5)) and the second inequality follows by Theo-
rem 1.3. Inequality (3.13) implies that we can choose large
n and

R < I(X;Y ) − 2εH(X) (3.14)

to drive Pe(w) to zero.
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(4) Finally, we compute the average cost of transmission if
(xn(w),yn) ∈ Tε(PXY ):

sn(xn(w),yn) =
1
n

n∑

i=1

s(xi(w),yi)

=
1
n

∑

a,b

N(a,b|xn(w),yn) s(a,b)

≤
∑

a,b

PXY (a,b)(1 + ε) s(a,b)

≤ E [s(X,Y )] + εsmax, (3.15)

where the first inequality follows by the definition (1.21).

Combining the above results, there is a code in the random ensemble
of codes that approaches the rate

C(S) = max
PX(·): E[s(X,Y )]≤S

I(X;Y ). (3.16)

We will later show that (3.16) is the capacity–cost function. If there is
no cost constraint, we achieve

C = max
PX(·)

I(X;Y ). (3.17)

3.5 Discrete Alphabet Examples

As an example, consider the binary symmetric channel (BSC) with
X = Y = {0,1} and Pr[Y )= X] = p. Suppose the costs s(X) depend on
X only and are s(0) = 0 and s(1) = E. We compute

I(X;Y ) = H(Y ) − H(Y |X)
= H2(PX(1) ∗ p) − H2(p) (3.18)

E [s(X)] = PX(1) · E, (3.19)

where q ∗ p = q(1 − p) + (1 − q)p. The capacity cost function is thus

C(S) = H2(min(S/E,1/2) ∗ p) − H2(p) (3.20)

and for S ≥ E/2 we have C = 1 − H2(p).
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As a second example, consider the binary erasure channel (BEC)
with X = {0,1} and Y = {0,1,∆}, and where Pr[Y = X] = 1 − p and
Pr[Y =∆ ] = p. For no cost constraint, we compute

C = max
PX(·)

H(X) − H(X|Y )

= max
PX(·)

H(X)(1 − p)

= 1 − p. (3.21)

3.6 Gaussian Examples

Consider the additive white Gaussian noise (AWGN) channel with

Y = X + Z, (3.22)

where Z is a zero-mean, variance N , Gaussian random variable that
is statistically independent of X. We further choose the cost function
s(x) = x2 and S = P for some P .

One can generalize the information theory for discrete alphabets
to continuous channels in several ways. First, we could quantize the
input and output alphabets into fine discrete alphabets and compute
the resulting capacity. We could repeat this procedure using progres-
sively finer and finer quantizations, and the capacity will increase and
converge if it is bounded. Alternatively, we could use the theory of
entropy-typical sequences (see Sections 1.2 and B.6) to develop a capac-
ity theorem directly from the channel model.

Either way, the resulting capacity turns out to be precisely (3.16).
We thus compute

C(P ) = max
PX(·): E[X2]≤P

h(Y ) − h(Y |X)

= max
PX(·): E[X2]≤P

h(Y ) − 1
2

log(2πeN )

≤ 1
2

log(2πe(P + N)) − 1
2

log(2πeN )

=
1
2

log(1 + P/N), (3.23)
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where the inequality follows by the maximum entropy theorem. We
achieve the C(P ) in (3.23) by choosing X to be a zero-mean, variance
P , Gaussian random variable.

Next, consider the following channel with a vector output:

Y = [H X + Z, H], (3.24)

where Z is Gaussian as before, and H is a random variable with density
pH(·) that is independent of X and Z. This problem models a fading
channel where the receiver, but not the transmitter, knows the fading
coefficient H. We choose the cost function s(x) = x2 with S = P , and
compute

C(P ) = max
PX(·): E[X2]≤P

I(X; [H X + Z, H])

= max
PX(·): E[X2]≤P

I(X;H) + I(X;H X + Z|H)

= max
PX(·): E[X2]≤P

I(X;H X + Z|H)

= max
PX(·): E[X2]≤P

∫

a
pH(a)h(aX + Z) da − 1

2
log(2πeN )

≤
∫

a
pH(a) · 1

2
log(1 + a2P/N) da, (3.25)

where the last step follows by the maximum entropy theorem (see
Appendix B.5.3). One can similarly compute C(P ) if H is discrete. For
example, suppose H takes on one of the three values: PH(1/2) = 1/4,
PH(1) = 1/2, and PH(2) = 1/4. The capacity is then

C(P ) =
1
8

log
(

1 +
P

4N

)
+

1
4

log
(

1 +
P

N

)
+

1
8

log
(

1 +
4P

N

)
.

Finally, consider the channel with nt × 1 input X, nr × nt fading
matrix H, nr × 1 output Y , and

Y = HX + Z, (3.26)

where Z is an nr × 1 Gaussian vector with i.i.d. entries of unit vari-
ance, and H is a fixed matrix. This problem is known as a vector
(or multi-antenna, or multi-input, multi-output, or MIMO) AWGN
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channel. We choose the cost function s(x) = ‖x‖2 with S = P , and
compute

C(P ) = max
PX(·): E[‖X‖2]≤P

I(X;HX + Z)

= max
PX(·): E[‖X‖2]≤P

h(HX + Z) − nr

2
log(2πe)

= max
tr[QX ]≤P

1
2

log
∣∣I + HQXHT

∣∣ , (3.27)

where the last step follows by the maximum entropy theorem (see
Appendix B.5.3). But note that one can write H = UDVT , where U
and V are unitary matrices (with UUT = I and VVT = I) and where
D is a diagonal nr × nt matrix with the singular values of H on the
diagonal. We can rewrite (3.27) as

C(P ) = max
tr[QX ]≤P

1
2

log
∣∣I + DQXDT

∣∣

= max∑min(nt,nr)
i=1 λi≤P

min(nt,nr)∑

i=1

1
2

log
(
1 + d2

i λi
)
, (3.28)

where the di, i = 1,2, . . . ,min(nt,nr), are the singular values of H, and
where we have used Hadamard’s inequality (see [18, p. 233]) for the
second step. The remaining optimization problem is the same as that
of parallel Gaussian channels with different gains. One can solve for
the λi by using waterfilling [18, Sec. 10.4], and the result is (see [62,
Sec. 3.1])

λi =
(

µ − 1
d2

i

)+
, (3.29)

where (x)+ = max(0,x) and µ is chosen so that
min(nt,nr)∑

i=1

(
µ − 1

d2
i

)+
= P. (3.30)

3.7 Two Properties of C(S)

We develop two properties of C(S) in (3.16). First, C(S) is a non-
decreasing function with S because the set of permissible PX(·) does not
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shrink by increasing S. Second, we show that C(S) is a concave function
of S. Consider two distinct points (C1,S1) and (C2,S2) on the boundary
of C(S), and suppose the distributions PX1(·) and PX2(·) achieve these
respective points. Consider also the distribution defined by

PX3(a) = λPX1(a) + (1 − λ)PX2(a), (3.31)

for all a, where 0 ≤ λ ≤ 1. The cost with PX3(·) is simply S3 = λS1 +
(1 − λ)S2. The new mutual information, however, is larger than the
convex combination of mutual informations, i.e., we have

I(X3;Y ) ≥ λI(X1;Y ) + (1 − λ)I(X2;Y ) (3.32)

as follows by the concavity of I(X;Y ) in PX(·) when PY |X(·) is fixed
(see Section A.11 and [18, p. 31]). We thus have

C(λS1 + (1 − λ)S2) = C(S3)
≥ I(X3;Y )
≥ λI(X1;Y ) + (1 − λ)I(X2;Y )
= λC(S1) + (1 − λ)C(S2). (3.33)

3.8 Converse

We show that C(S) in (3.16) is the capacity–cost function. We bound

I(W ;Ŵ ) ≤ I(Xn;Y n)

=
n∑

i=1

H(Yi|Y i−1) − H(Yi|Xi)

≤
n∑

i=1

H(Yi) − H(Yi|Xi)

=
n∑

i=1

I(Xi;Yi). (3.34)
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We use (3.16) and the concavity (3.33) to continue the chain of
inequalities (3.34):

I(W ;Ŵ ) ≤
n∑

i=1

C (E [s(Xi,Yi)])

≤ nC

(
1
n

n∑

i=1

E [s(Xi,Yi)]

)

= nC(E [sn(Xn,Y n)])
≤ nC(S), (3.35)

where the last step follows because we require E [sn(Xn,Y n)] ≤ S and
because C(S) is non-decreasing. Inserting (3.35) into (3.8) and (3.11)
we have

R ≤ C(S) + H2(Pe)/n

1 − Pe
, (3.36)

and

R ≤ C(S)
1 − H2(Pb)

. (3.37)

Thus, we find that R can be at most C(S) for reliable communication
and E [sn(Xn,Y n)] ≤ S.

3.9 Feedback

Suppose we have a DMC with feedback in the sense that Xi can be a
function of the message W and some noisy function of the past chan-
nel outputs Y i−1. One might expect that feedback can increase the
capacity of the channel. To check this, we study the best type of feed-
back: suppose Y i−1 is passed through a noise-free channel as shown in
Figure 3.2. We slightly modify (3.34) and bound

I(W ;Ŵ ) ≤ I(W ;Y n)

=
n∑

i=1

H(Yi|Y i−1) − H(Yi|WY i−1)
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Channel

Delay

Message
Source SinkDecoderEncoder

Fig. 3.2 The capacity–cost problem with feedback.

=
n∑

i=1

H(Yi|Y i−1) − H(Yi|WY i−1Xi)

=
n∑

i=1

H(Yi|Y i−1) − H(Yi|Y i−1Xi)

=
n∑

i=1

I(Xi;Yi|Y i−1), (3.38)

where the third step follows because Xi is a function of W and Y i−1,
and the fourth step because the channel is memoryless. The last quan-
tity in (3.38) is known as the directed information flowing from Xn to
Y n and is written as I(Xn → Y n) (see [45]). The directed information
is the “right” quantity to study for many types of channels including
multi-user channels (see [37]).

Continuing with (3.38), we have

I(Xn → Y n) =
n∑

i=1

H(Yi|Y i−1) − H(Yi|Y i−1Xi)

=
n∑

i=1

H(Yi|Y i−1) − H(Yi|Xi)

≤
n∑

i=1

H(Yi) − H(Yi|Xi)

=
n∑

i=1

I(Xi;Yi), (3.39)
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where the second step follows because the channel is memoryless. We
have thus arrived at (3.34) and find the surprising result that feedback
does not improve the capacity–cost function of a discrete memoryless
channel [20, 56].

3.10 Appendix: Data Processing Inequalities

Proof. We prove the data processing inequalities. We have

I(X;Z) = H(X) − H(X|Z)
≤ H(X) − H(X|ZY )
= H(X) − H(X|Y )
= I(X;Y ). (3.40)

One can prove I(X;Z) ≤ I(Y ;Z) in the same way. Next, by the log-sum
inequality (A.78) we have

D(PY1‖PY2) =
∑

y

PY1(y) log
PY1(y)
PY2(y)

=
∑

y

(
∑

x

PX1(x)PY |X(y|x)

)
log
∑

x PX1(x)PY |X(y|x)
∑

x PX2(x)PY |X(y|x)

≤
∑

y

∑

x

PX1(x)PY |X(y|x) log
PX1(x)PY |X(y|x)
PX2(x)PY |X(y|x)

=
∑

x

PX1(x)

(
∑

y

PY |X(y|x)

)
log

PX1(x)
PX2(x)

= D(PX1‖PX2). (3.41)
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The Slepian–Wolf Problem, or Distributed

Source Coding

4.1 Problem Description

The distributed source coding problem is the first multi-terminal
problem we consider, in the sense that there is more than one encoder
or decoder. Suppose a DMS PXY (·) with alphabet X × Y emits two
sequences xn and yn, where xi ∈ X and yi ∈ Y for all i (see Figure 4.1).
There are two encoders: one encoder maps xn into one of 2nR1 indexes
w1, and the other encoder maps yn into one of 2nR2 indexes w2. A decoder
receives both w1 and w2 and produces the sequences x̂n(w1,w2) and
ŷn(w1,w2), where x̂i ∈ X and ŷi ∈ Y for all i. The problem is to find
the set of rate pairs (R1,R2) for which one can, for sufficiently large n,
design encoders and a decoder so that the error probability

Pe = Pr
[
(X̂n, Ŷ n) )= (Xn,Y n)

]
(4.1)

can be made an arbitrarily small positive number.
This type of problem might be a simple model for a scenario involv-

ing two sensors that observe dependent measurement streams Xn and
Y n, and that must send these to a “fusion center.” The sensors usu-
ally have limited energy to transmit their data, so they are inter-
ested in communicating both efficiently and reliably. For example, an

309
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Decoder

Encoder 1

Encoder 2

Source Sink

Fig. 4.1 A distributed source coding problem.

obvious strategy is for both encoders to compress their streams to
entropy so that one achieves (R1,R2) ≈ (H(X),H(Y )). On the other
hand, an obvious outer bound on the set of achievable rate-pairs is
R1 + R2 ≥ H(XY ), since this is the smallest possible sum-rate if both
encoders cooperate.

The problem of Figure 4.1 was solved by Slepian and Wolf in an
important paper in 1973 [60]. They found the rather surprising result
that the sum-rate R1 + R2 = H(XY ) is, in fact, approachable! More-
over, their encoding technique involves a simple and effective trick sim-
ilar to hashing, and this trick has since been applied to many other
communication problems. The Slepian–Wolf encoding scheme can be
generalized to ergodic sources [14], and is now widely known as parti-
tioning or binning.

4.2 Preliminaries

Recall (see Theorem 1.3) that for 0 ≤ ε1 < ε ≤ µXY , xn ∈ Tn
ε1(PX), and

Y n emitted from a DMS PY (·), we have

Pr[(xn,Y n) ∈ Tn
ε (PXY )] ≤ 2−n[I(X;Y )−2εH(Y )]. (4.2)

It is somewhat easier to prove a random version of (4.2) rather than
a conditional one. That is, if Xn and Y n are output by the respective
PX(·) and PY (·), then we can use Theorem 1.1 to bound

Pr[(Xn,Y n) ∈ Tn
ε (PXY )] =

∑

(xn,yn)∈T n
ε (PXY )

Pn
X(xn)Pn

Y (yn)

≤ 2nH(XY )(1+ε) 2−nH(X)(1−ε) 2−nH(Y )(1−ε)

≤ 2−n[I(X;Y )−3εH(XY )]. (4.3)
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We similarly use Theorem 1.1 to compute

Pr[(Xn,Y n) ∈ Tn
ε (PXY )] ≥ (1 − δε(n)2−n[I(X;Y )+3εH(XY )], (4.4)

where

δε(n) = 2|X ||Y| · e−nε2µXY . (4.5)

4.3 An Achievable Region

We present a random code construction that makes use of binning.
We will consider only block-to-block encoders, although one could also
use variable-length encoders. The code book construction is depicted
in Figures 4.2 and 4.3 (see also [18, p. 412]).

Code Construction: Generate 2n(R1+R′
1) codewords xn(w1,v1), w1 =

1,2, . . . ,2nR1 , v1 = 1,2, . . . ,2R′
1 , by choosing the n · 2n(R1+R′

1) symbols
xi(w1,v1) independently at random using PX(·). Similarly, generate
2n(R2+R′

2) codewords yn(w2,v2), w2 = 1,2, . . . ,2nR2 , v2 = 1,2, . . . ,2R′
2 ,

by choosing the n · 2n(R2+R′
2) symbols yi(w2,v2) independently at ran-

dom using PY (·).

Encoders: Encoder 1 tries to find a pair (w1,v1) such that xn =
xn(w1,v1). If successful, Encoder 1 transmits the bin index w1. If

bin 2

bin

bin 1

Fig. 4.2 Binning for the xn sequences.
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codewords

codewords

Fig. 4.3 Binning for the xn and yn sequences. A dot indicates a pair (xn,yn) in T n
ε (PXY ).

There should be at most one dot for every bin pair (w1,w2).

unsuccessful, encoder 1 transmits w1 = 1. Encoder 2 proceeds in the
same way with yn and transmits w2.

Decoder: Given (w1,w2), try to find a pair (v̂1, v̂2) such that
(xn(w1, v̂1),yn(w2, v̂2)) ∈ Tn

ε (PXY ). If successful, put out the corre-
sponding sequences. If unsuccessful, put out (xn(w1,1),yn(w2,1)).

Analysis: We consider five events. Let 0 < ε1 < ε ≤ µXY .

(1) Suppose that (xn,yn) /∈ Tn
ε1(PXY ). The probability of this

event is at most δε1(n) where

δε1(n) = 2|X ||Y| · e−nε21µXY (4.6)

since we are considering X and Y together. As usual,
δε1(n) → 0 for n → ∞ and ε1 > 0.

(2) Suppose for the remaining steps that (xn,yn) ∈ Tn
ε1(PXY ).

Encoder 1 makes an error if xn is not a codeword. Using
(1 − x) ≤ e−x, the probability that this happens is upper
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bounded by

[1 − Pn
X(xn)]2

n(R1+R′
1)

≤ exp
(
−2n(R1+R′

1) · Pn
X(xn)

)

< exp
(
−2n[R1+R′

1−H(X)(1+ε1)]).
(4.7)

A similar bound can be derived for the probability of the
event that yn is not a codeword. We thus choose

R′
1 = H(X) − R1 + 2ε1H(XY )

R′
2 = H(Y ) − R2 + 2ε1H(XY ). (4.8)

(3) Suppose that xn = xn(w1,v1) and yn = yn(w2,v2). Con-
sider the event that there is a (ṽ1, ṽ2) )= (v1,v2) with
(xn(w1, ṽ1),yn(w2, ṽ2)) ∈ Tn

ε (PXY ). Since the xn(w1,v1) were
chosen independently via PX(·), the probability of this
event is

Pr




⋃

(ṽ1,ṽ2)'=(v1,v2)

{(Xn(w1, ṽ1),Y n(w2, ṽ2)) ∈ Tn
ε (PXY )}





≤
∑

ṽ1 '=v1

Pr[(Xn,yn(w2,v2)) ∈ Tn
ε (PXY )]

+
∑

ṽ2 '=v2

Pr[(xn(w1,v1),Y n) ∈ Tn
ε (PXY )]

+
∑

ṽ1 '=v1

∑

ṽ2 '=v2

Pr[(Xn,Y n) ∈ Tn
ε (PXY )]

< 2nR′
1 2−n[I(X;Y )−2εH(X)] + 2nR′

2 2−n[I(X;Y )−2εH(Y )]

+ 2n(R′
1+R′

2)2−n[I(X;Y )−3εH(XY )]

≤ 2n[H(X|Y )−R1+4εH(XY )] + 2n[H(Y |X)−R2+4εH(XY )]

+ 2n[H(XY )−R1−R2+7εH(XY )], (4.9)

where we have used the union bound for the first step, (4.2)
and (4.3) for the second step, and (4.8) for the third step.
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The bound (4.9) implies that we can choose large n and

R1 > H(X|Y ) + 4εH(XY ) (4.10)
R2 > H(Y |X) + 4εH(XY ) (4.11)

R1 + R2 > H(XY ) + 7εH(XY ) (4.12)

to drive the probability of this event to zero.

Combining the above results, for large n we can approach the rate
pairs (R1,R2) satisfying

R1 ≥ H(X|Y )
R2 ≥ H(Y |X)

R1 + R2 ≥ H(XY ). (4.13)

The form of this region is depicted in Figure 4.4. We remark again
that separate encoding of the sources achieves the point (R1,R2) =
(H(X),H(Y )), and the resulting achievable region is shown as the
shaded region in Figure 4.4. Note also, the remarkable fact that one can
approach R1 + R2 = H(XY ), which is the minimum sum-rate even if
both encoders could cooperate!

4.4 Example

As an example, suppose PXY (·) is defined via

Y = X ⊕ Z, (4.14)

Fig. 4.4 The Slepian–Wolf source coding region.
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where PX(0) = PX(1) = 1/2, and Z is independent of X with PZ(0) =
1 − p and PZ(1) = p. The region of achievable (R1,R2) is therefore

R1 ≥ H2(p)
R2 ≥ H2(p)

R1 + R2 ≥ 1 + H2(p). (4.15)

For example, if p ≈ 0.11 we have H2(p) = 0.5. The equal rate boundary
point is R1 = R2 = 0.75, which is substantially better than the R1 =
R2 = 1 achieved with separate encoding.

Continuing with this example, suppose we wish to approach the cor-
ner point (R1,R2) = (1,0.5). We can use the following encoding proce-
dure: transmit xn without compression to the decoder, and compress yn

by multiplying yn on the right by a n × (n/2) sparse binary matrix H
(we use matrix operations over the Galois field GF(2)). The matrix H
can be considered to be a parity-check matrix for a low-density parity-
check (LDPC) code. The encoding can be depicted in graphical form as
shown in Figure 4.5. Furthermore, the decoder can consider the xn to
be outputs from a binary symmetric channel (BSC) with inputs yn and
crossover probability p ≈ 0.11. One must, therefore, design the LDPC
code to approach capacity on such a channel, and techniques for doing
this are known [52]. This example shows how channel coding techniques
can be used to solve a source coding problem.

4.5 Converse

We show that the rates of (4.13) are, in fact, the best rates we can
hope to achieve for block-to-block encoding. Recall that there are 2nR1

indexes w1, and that w1 is a function of xn. We thus have

nR1 ≥ H(W1)
≥ H(W1|Y n)
= H(W1|Y n) − H(W1|XnY n)
= I(Xn;W1|Y n)
= H(Xn|Y n) − H(Xn|Y nW1). (4.16)

Next, note that H(Xn|Y n) = nH(X|Y ), that w2 is a function of yn,
and that x̂n and ŷn are functions of w1 and w2. We continue the above
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Nodes
Variable
Nodes

Check

Fig. 4.5 A linear source encoder for binary yn.

chain of inequalities as

nR1 ≥ nH(X|Y ) − H(Xn|Y nW1)

= nH(X|Y ) − H(Xn|Y nW1W2X̂
nŶ n)

≥ nH(X|Y ) − H(XnY n|X̂nŶ n)
≥ nH(X|Y ) − n [Pe log2(|X | · |Y|) + H2(Pe)/n] , (4.17)

where the final step follows by using Pe = Pr[(Xn,Y n) )= (X̂n, Ŷ n)] and
applying Fano’s inequality. We thus find that R1 ≥ H(X|Y ) for (block-
to-block) encoders with arbitrarily small positive Pe. Similar steps show
that

R2 ≥ H(Y |X) − [Pe log2(|X | · |Y|) + H2(Pe)/n]
R1 + R2 ≥ H(XY ) − [Pe log2(|X | · |Y|) + H2(Pe)/n] . (4.18)

This completes the converse.



5
The Wyner–Ziv Problem, or Rate Distortion

with Side Information

5.1 Problem Description

Consider again the model of Figure 4.1 that is depicted in Figure 5.1.
However, we now permit X̂n ∈ X̂ n and Ŷ n ∈ Ŷn to be distorted versions
of the respective Xn and Y n. The goal is to design the encoders and
decoder so the average distortions E

[
dn

1 (Xn, X̂n)
]

and E
[
dn

2 (Y n, Ŷ n)
]

are smaller than the respective D1 and D2.
It might seem remarkable, but this distributed source coding prob-

lem is still open even if both distortion functions are averages of per-
letter distortion functions. That is, the best (known) achievable region
of four-tuples (R1,R2,D1,D2) is not the same as the best (known) outer
bound on the set of such four-tuples. The problem has, however, been
solved for several important special cases. One of these is the RD prob-
lem, where Y could be modeled as being independent of X. A second
case is the Slepian–Wolf problem that has D1 = D2 = 0. A third case
is where R2 ≥ H(Y ) (or R1 ≥ H(X)), in which case the decoder can
be made to recover Y n with probability 1 as n becomes large. This
problem is known as the Wyner–Ziv problem that we will treat here
(see [71]).

317
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Decoder

Encoder 1

Encoder 2

Source Sink

Fig. 5.1 A distributed source coding problem.

Decoder

Encoder

Source

Sink

Fig. 5.2 The Wyner–Ziv problem.

Consider, then, the Wyner–Ziv problem, depicted in a simpler form
in Figure 5.2. This problem is also referred to as rate distortion with
side information, where Y n is the “side information.” The index w
takes on one of 2nR values, and the average distortion

1
n

n∑

i=1

E
[
d
(
Xi, X̂i(W,Y n)

)]

should be at most D. The problem is to find the set of pairs (R,D)
that can be approached with source encoders and decoders.

This problem has practical import in some, perhaps, unexpected
problems. Consider, e.g., a wireless relay channel with a transmitter,
relay, and destination. The relay might decide to pass on to the des-
tination its noisy observations Y n of the transmitter signal Xn. The
destination would then naturally view Y n as side information. There are
many other problems where side information plays an important role.

5.2 Markov Lemma

We need a result concerning Markov chains X − Y − Z that is known
as the Markov Lemma [6]. Let µXY Z be the smallest positive value
of PXY Z(·) and 0 ≤ ε1 < ε2 ≤ µXY Z . Suppose that (xn,yn) ∈ Tε1(PXY )
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and (Xn,Y n,Zn) was emitted by the DMS PXY Z(·). Theorem 1.2
immediately gives

Pr
[
Zn ∈ Tn

ε2(PXY Z |xn,yn) |Y n = yn
]

= Pr
[
Zn ∈ Tn

ε2(PXY Z |xn,yn) |Xn = xn,Y n = yn
]

≥ 1 − δε1,ε2(n), (5.1)

where the first step follows by Markovity, and the second step by (1.27)
where

δε1,ε2(n) = 2|X ||Y||Z|exp
(

−n · (ε2 − ε1)2

1 + ε1
· µXY Z

)
. (5.2)

Observe that the right-hand side of (5.1) approaches 1 as n → ∞.

5.3 An Achievable Region

The coding and analysis will be somewhat trickier than for the RD or
Slepian–Wolf problems. We introduce a new random variable U , often
called an auxiliary random variable, to the problem. Let PU |X(·) be a
“channel” from X to U , where the alphabet of U is U . U represents
a codeword sent from the encoder to the decoder. We further define a
function f(·) that maps symbols in U × Y to X̂ , i.e., the reconstruction
x̂n has x̂i = f(ui,yi) for all i (recall that yn is one of the two output
sequences of the source). We write the corresponding sequence mapping
as x̂n = fn(un,yn).

Code Construction: Generate 2n(R+R′) codewords un(w,v), w =
1,2, . . . ,2nR, v = 1,2, . . . ,2nR′ , by choosing the n · 2n(R+R′) symbols
ui(w,v) in the code book independently at random according to PU (·)
(computed from PXU (·)). Observe that we are using the same type of
binning as for the Slepian–Wolf problem.

Encoder: Given xn, try to find a pair (w,v) such that (xn,un(w,v)) ∈
Tn

ε (PXU ). If one is successful, send the index w. If one is unsuccessful,
send w = 1.

Decoder: Given w and yn, try to find a ṽ such that (yn,un(w, ṽ)) ∈
Tn

ε (PY U ). If there is one or more such ṽ, choose one as v̂ and put out
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the reconstruction x̂n(w,yn) = fn(un(w, v̂),yn). If there is no such ṽ,
then put out x̂n(w,yn) = fn(un(w,1),yn).

Analysis: We divide the analysis into several parts, and upper bound
the average distortion for all but the last part by dmax (see [18, pp. 442–
443]). Let 0 < ε1 < ε2 < ε ≤ µUXY .

(1) Suppose that (xn,yn) /∈ Tn
ε1(PXY ). The probability of this

event approaches zero with n.
(2) Suppose that (xn,yn) ∈ Tn

ε1(PXY ) but the encoder cannot
find a pair (w,v) such that (xn,un(w,v)) ∈ Tn

ε2(PXU ). This
event is basically the same as that studied for the RD encoder
in (2.8). That is, the probability of this event is small if ε2 is
small, n is large and

R + R′ > I(X;U). (5.3)

(3) Suppose (xn,yn) ∈ Tn
ε1(PXY ) and the encoder finds a

(w,v) with (xn,un(w,v)) ∈ Tn
ε2(PXU ). However, suppose the

decoder finds a ṽ )= v such that (yn,un(w, ṽ)) ∈ Tn
ε2(PY U ).

The probability of this event is upper bounded by

Pr




⋃

ṽ '=v

{
(yn,Un(w, ṽ)) ∈ Tn

ε2(PY U )
}




≤
∑

ṽ '=v

Pr
[
(yn,Un) ∈ Tn

ε2(PY U )
]

< 2n[R′−I(U ;Y )+2ε2H(U)]. (5.4)

Thus, we require that ε2 is small, n is large, and

R′ < I(Y ;U). (5.5)

(4) Suppose (xn,yn) ∈ Tn
ε1(PXY ), the encoder finds a (w,v) with

(xn,un(w,v)) ∈ Tn
ε2(PXU ), but the decoder cannot find an

appropriate ṽ. That is, yi was chosen via PY |X(·|xi) =
PY |XU (·|xi,ui) for all i and any ui, and U − X − Y forms
a Markov chain, but we have (yn,xn,un(w,v)) /∈ Tn

ε (PY XU ).
The bound (5.1) states that the probability of this event is
small for large n.
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(5) Finally, consider the case (xn,un(w,v),yn) ∈ Tn
ε (PXUY ) and

v̂ = v. The distortion is bounded by

D(xn,yn) =
1
n

n∑

i=1

d(xi, x̂i(w,yn))

=
1
n

n∑

i=1

d(xi,f(ui,yi))

=
1
n

∑

a,b,c

N(a,b,c|xn,un,yn) d(a,f(b,c))

≤
∑

a,b,c

PXUY (a,b,c)(1 + ε) d(a,f(b,c))

= E [d(X,f(U,Y ))] + εdmax, (5.6)

where we have assumed that d(·) is upper bounded by dmax.

Combining the above results, we can achieve the rate

RWZ(D) = min
PU|X(·),f(·): E[d(X,f(U,Y ))]≤D

I(X;U) − I(Y ;U). (5.7)

One can use the Fenchel–Eggleston strengthening of Carthéodory’s
Theorem to show that one can restrict attention to U whose alphabet
U satisfies |U| ≤ |X | + 1 [71, Proof of Thm. A2 on p. 9]. We remark
that one could replace f(·) by a probability distribution PX̂|UY (·), but
it suffices to use a deterministic mapping X̂ = f(U,Y ).

Observe that one can alternatively write the mutual information
expression in (5.7) as

I(X;U) − I(Y ;U) = H(U |Y ) − H(U |X)
= H(U |Y ) − H(U |XY )
= I(X;U |Y ). (5.8)

The formulation (5.8) is intuitively appealing from the decoder’s per-
spective if we regard U as representing the index W in Figure 5.2.
However, the interpretation is not fitting from the encoder’s perspec-
tive because the encoder does not know Y . Moreover, note that

I(X;U |Y ) = I(X;UX̂|Y ) ≥ I(X;X̂|Y ) (5.9)
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with equality if and only if I(X;U |Y X̂) = 0. It is the expression on the
right in (5.9) that corresponds to the case where the encoder also sees
Y . That is, the RD function for the problem where both the encoder
and decoder have access to the side information Y is

RX|Y (D) = min
PX̂|XY (·): E[d(X,X̂)]≤D

I(X;X̂|Y ), (5.10)

which is less than RWZ(D) for most common sources and distortion
functions.

5.4 Discrete Alphabet Example

As an example, consider the BSS PX(·) with Hamming distortion. Sup-
pose Y is the output of a BSC that has input X and crossover proba-
bility p. We use two encoding strategies and time-share between them.
For the first strategy, we choose U as the output of a BSC with input
X and crossover probability β (note that |U| ≤ |X | + 1). We further
choose X̂ = f(Y,U) = U and compute

I(X;U) − I(Y ;U) = [1 − H2(β)] − [1 − H2(p ∗ β)]
= H2(p ∗ β) − H2(β), (5.11)

Where p ∗ β = p(1 − β) + (1 − p)β and E[d(X,X̂)] = β. For the sec-
ond strategy, we choose U = 0 and X̂ = f(Y,U) = Y . This implies
I(X;U) − I(Y ;U) = 0 and E[d(X,X̂)] = p. Finally, we use the first and
second strategies a fraction λ and 1 − λ of the time, respectively. We
achieve the rates

R′
WZ(D) = min

λ,β: λβ+(1−λ)p≤D
λ [H2(p ∗ β) − H2(β)] . (5.12)

This achievable region is, in fact, the rate distortion function for this
problem (see [71, Sec. II]).

Recall that, without side information, the RD function for the BSS
and Hamming distortion is 1 − H2(p). One can check that this rate is
larger than (5.12) unless D = 1/2 or p = 1/2, i.e., unless R(D) = 0 or
X and Y are independent. Consider also the case where the encoder
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has access to Y n. For the BSS and Hamming distortion, we compute

RX|Y (D) =
{

h(p) − h(D) 0 ≤ D < p
0 p ≤ D.

(5.13)

We find that RX|Y (D) is less than (5.12) unless D = 0, p ≤ D, or
p = 1/2.

5.5 Gaussian Source and Mean Squared Error Distortion

As a second example, suppose X and Y are Gaussian random variables
with variances σ2

X and σ2
Y , respectively, and with correlation coefficient

ρ = E [XY ]/(σXσY ). For the Gaussian distortion function, we require
E[(X − X̂)2] ≤ D. Clearly, if D ≥ σ2

X(1 − ρ2), then R(D) = 0. So sup-
pose that D < σ2

X(1 − ρ2). We choose U = X + Z, where Z is a Gaus-
sian random variable with variance σ2

Z and X̂ = f(Y,U) = E [X|Y,U ],
i.e., X̂ is the minimum mean-square error (MMSE) estimate of X given
Y and U . We use (5.8) to compute

I(X;U |Y ) = h(X|Y ) − h(X|Y U)

= h(X|Y ) − h(X − X̂|Y U)

= h(X|Y ) − h(X − X̂)

=
1
2

log
(

σ2
X(1 − ρ2)

D

)
, (5.14)

where the third step follows by the orthogonality principle of MMSE
estimation, and where the fourth step follows by choosing Z so that
E
[
(X − X̂)2

]
= D. The rate (5.14) turns out to be optimal, and it

is generally smaller than the RD function R(D) = log(σ2
X/D)/2 that

we computed in Section 2.4. However, one can check that RX|Y (D) =
RWZ(D). Thus, for the Gaussian source and squared error distortion
the encoder can compress at the same rate whether or not it sees Y !

5.6 Two Properties of RW Z(D)

The function RWZ(D) in (5.7) is clearly non-increasing with D. We
prove that RWZ(D) is convex in D [18, Lemma 14.9.1 on p. 439].



324 The Wyner–Ziv Problem, or Rate Distortion with Side Information

Consider two distinct points (R1,D1) and (R2,D2) on the bound-
ary of RWZ(D), and suppose the channels and functions PU1|X(·),
X̂1 = f1(U1,Y ) and PU2|X(·), X̂2 = f2(U2,Y ) achieve these respective
points. Let Q be a random variable with PQ(1) = 1 − PQ(2) = λ that
is independent of X and Y . Define U3 = [Q,Ũ3] and consider the
distribution

P[Q,Ũ3]|X([q,a]|b) = PQ(q)PUq |X(a|b) for all q, a, b, (5.15)

i.e., we have Ũ3 = U1 if Q = 1 and Ũ3 = U2 if Q = 2. We consider U3 as
our auxiliary random variable. Consider also f3(·) with f3([Q,Ũ3],Y ) =
(2 − Q)f1(Ũ3,Y ) + (Q − 1)f2(Ũ3,Y ). The distortion with P[Q,Ũ3]|X(·)
is simply D3 = λD1 + (1 − λ)D2. We thus have

RWZ(λD1 + (1 − λ)D2) = RWZ(D3)

≤ I(X;QŨ3|Y )

= I(X; Ũ3|Y Q)
= λI(X;U1|Y ) + (1 − λ)I(X;U2|Y )
= λRWZ(D1) + (1 − λ)RWZ(D2). (5.16)

5.7 Converse

We show that RWZ(D) in (5.7) is the RD function for the Wyner–Ziv
problem. Let X̂n = g(W,Y n) and D = 1

n

∑n
i=1 E[d(Xi, X̂i)]. Recall that

there are 2nR indexes w. We thus have

nR ≥ H(W )
≥ I(Xn;W |Y n)
= H(Xn|Y n) − H(Xn|WY n)

=
n∑

i=1

H(Xi|Yi) − H(Xi|Yi (WY i−1Y n
i+1) Xi−1)

≥
n∑

i=1

H(Xi|Yi) − H(Xi|Yi (WY i−1Y n
i+1))
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=
n∑

i=1

H(Xi|Yi) − H(Xi|YiUi)

=
n∑

i=1

I(Xi;Ui|Yi), (5.17)

where the second last step follows by setting Ui = [W Y i−1 Y n
i+1].

Note that Ui − Xi − Yi forms a Markov chain for all i, and that
X̂i = gi(W,Y n) = fi(Ui,Yi) for some gi(·) and fi(·). We use the defi-
nition (5.7), the alternative formulation (5.8), and the convexity (5.16)
to continue the chain of inequalities (5.17):

nR ≥
n∑

i=1

RWZ (E [d(Xi,fi(Ui,Yi))])

≥ nRWZ

(
1
n

n∑

i=1

E [d(Xi,fi(Ui,Yi))]

)

= nRWZ

(
1
n

n∑

i=1

E
[
d(Xi, X̂i)

])

≥ nRWZ(D). (5.18)

Thus, the random coding scheme described in Section 5.3 is rate-
optimal.



6
The Gelfand–Pinsker Problem, or Coding for

Channels with State

6.1 Problem Description

The Gelfand–Pinsker problem is depicted in Figure 6.1. A source sends
a message w, w ∈ {1,2, . . . ,2nR}, to a receiver by mapping it into a
sequence xn. However, as an important change to a DMC, the channel
PY |XS(·) has interference in the form of a sequence sn that is output
from a DMS PS(·). Moreover, the encoder has access to the interference
sn in a noncausal fashion, i.e., the encoder knows sn ahead of time. The
receiver does not know sn. The goal is to design the encoder and decoder
to maximize R while ensuring that Pe = Pr[Ŵ )= W ] can be made an
arbitrarily small positive number. The capacity C is the supremum of
the achievable rates R.

The problem might seem strange at first glance. Why should inter-
ference be known noncausally? However, such a situation can arise
in practice. Consider, for example, the encoder of a broadcast chan-
nel with two receivers. The two messages for the receivers might be
mapped to sequences sn

1 and sn
2 , respectively, and sn

1 can be thought of
as being interference for sn

2 . Furthermore, the encoder does have non-
causal knowledge of sn

1 . We will develop such a coding scheme later on.

326
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Channel

Message
Source SinkDecoderEncoder

Fig. 6.1 The Gelfand–Pinsker problem.

As a second example, suppose we are given a memory device that
has been imprinted, such as a compact disc. We wish to encode new
data on this “old” disc in order to reuse it. We can read the data sn

already in the memory, and we can view sn as interference that we know
noncausally. We might further wish to model the effect of errors that an
imprinting device can make during imprinting by using a probabilistic
channel PY |XS(·).

6.2 An Achievable Region

The Gelfand–Pinsker problem was solved in [28] by using binning. We
begin by introducing an auxiliary random variable U with alphabet
U , and we consider U to be the output of a “channel” PU |S(·). We
also define a function f(·) that maps symbols in U × S to X , i.e., the
sequence xn will have xi = f(ui,si) for all i. We write the corresponding
sequence mapping as xn = fn(un,sn).

Code Construction: Generate 2n(R+R′) codewords un(w,v), w =
1,2, . . . ,2nR, v = 1,2, . . . ,2nR′ , by choosing the n · 2n(R+R′) symbols
ui(w,v) in the code book independently at random according to PU (·).

Encoder: Given w and sn, try to find a v such that
(un(w,v),sn) ∈ Tn

ε (PUS). That is, w chooses the bin with code-
words un(w,1),un(w,2), . . . ,un(w,2nR′), and the interference “selects”
u(w,v) from this bin. If one finds an appropriate codeword u(w,v),
transmit xn = fn(un(w,v),sn). If not, transmit xn = fn(un(w,1),sn).

Decoder: Given yn, try to find a pair (w̃, ṽ) such that (un(w̃, ṽ),yn) ∈
Tn

ε (PUY ). If there is one or more such pair, then choose one and put
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out the corresponding w̃ as ŵ. If there is no such pair, then put out
ŵ = 1.

Analysis: We proceed in several steps. Let 0 < ε1 < ε2 < ε3 < ε ≤
µUSXY , where µUSXY is the smallest positive value of PUSXY (·).

(1) Suppose that sn /∈ Tn
ε1(PS). The probability of this event

approaches zero with n.
(2) Suppose sn ∈ Tn

ε1(PS) but the encoder cannot find a v such
that (un(w,v),sn) ∈ Tn

ε2(PUS). This event is basically the
same as that studied for the rate-distortion problem. That
is, the probability of this event is small if ε2 is small, n is
large and

R′ > I(U ;S). (6.1)

(3) Suppose (un(w,v),sn) ∈ Tn
ε2(PUS) which implies

(un(w,v),sn,xn) ∈ Tn
ε2(PUSX) (to see this, write

N(a,b,c|un,sn,xn) as a function of N(a,b|un,sn)). Suppose
further that (un(w,v),yn) /∈ Tn

ε3(PUY ), i.e., yi was chosen
using PY |SX(·|si,xi(ui,si)) for all i, and Y − [S,X] − U ,
but we have (yn, [sn,xn],un) /∈ Tn

ε3(PY [S,X]U ). The Markov
Lemma in Section 5.2 ensures that the probability of this
event is small for large n.

(4) Suppose yn ∈ Tn
ε3(PY ) and the decoder finds a (w̃, ṽ)

with w̃ )= w and (un(w̃, ṽ),yn) ∈ Tn
ε (PUY ). By Theorem 1.3,

the probability of this event for any of the (2nR − 1) ·
2nR′ codewords outside of w’s bin is upper bounded by
2−n[I(U ;Y )−2εH(U)]. Thus, we require that ε is small, n is large,
and

R + R′ < I(U ;Y ). (6.2)

Combining (6.1) and (6.2), we can approach the rate

RGP = max
PU|S(·),f(·)

I(U ;Y ) − I(U ;S), (6.3)

where U − [S,X] − Y forms a Markov chain. As shown below, RGP is
the capacity of the Gelfand–Pinsker problem.
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We list a few properties of RGP. First, Carthéodory’s theorem guar-
antees that one can restrict attention to U whose alphabet U satis-
fies |U| ≤ |X | · |S| + 1 [28, Prop. 1]. Second, one achieves RGP without
obtaining Sn at the receiver. Observe also that

I(U ;Y ) − I(U ;S) = H(U |S) − H(U |Y )
≤ H(U |S) − H(U |Y S)
= I(U ;Y |S)
= I(X;Y |S). (6.4)

Thus, RGP is less than the capacity if both the encoder and decoder
have access to Sn, namely

RS = max
PX|S(·)

I(X;Y |S). (6.5)

Next, observe that if Y is independent of S given X then we can choose
[U,X,Y ] to be independent of S and arrive at

RGP = max
PU (·),f(·)

I(U ;Y )

= max
PX(·)

I(X;Y )

= max
PX(·)

I(X;Y |S). (6.6)

Finally, the rate expression in (6.3) has convexity properties devel-
oped in Section 6.5.

6.3 Discrete Alphabet Example

As an example, suppose PY |XS(·) has binary X and Y , and ternary
S. Suppose that if S = 0 we have PY |XS(1|x,0) = q for x = 0,1, if
S = 1 we have PY |XS(1|x,0) = 1 − q for x = 0,1, and if S = 2 we
have PY |XS(x|x,0) = 1 − p for x = 0,1. Suppose further that PS(0) =
PS(1) = λ and PS(2) = 1 − 2λ. We wish to design PU |S(·) and f(·). We
should consider |U|≤ 7, but we here concentrate on binary U . Consider
S = 0 and S = 1 for which PY |XS(·) does not depend on X, so we may
as well choose X = S. We further choose PU |S(0|0) = PU |S(1|1) = α.
For S = 2, we choose X = U and PX(0) = PX(1) = 1/2. We compute
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the achievable rate to be

R(α) = I(U ;Y ) − I(U ;S) = [1 − H2(Pr[Y = U ])] − 2λ [1 − H2(α)],
(6.7)

where

Pr[Y = U ] = 2λ [α(1 − q) + (1 − α)q] + (1 − 2λ)(1 − p). (6.8)

The final step is to optimize over the parameter α. The resulting rate
turns out to be the capacity of this channel (see [28, Sec. 5]).

6.4 Gaussian Channel

Suppose S is a (possibly non-Gaussian) random variable with finite
variance [12, Sec. II-D, 13],. Suppose further that

Y = X + S + Z,

where Z is additive white Gaussian noise (AWGN) with variance N ,
and that we have the power constraint E

[
X2

i

]
≤ P for i = 1,2, . . . ,n.

This problem has become known as “writing on dirty paper” [13]. We
define U and X via U = X + αS, where X is Gaussian, has variance P ,
and is statistically independent of S. (N.B. This does not necessarily
mean that Xn is statistically independent of Sn.) We further choose
α = P/(P + N) to make X + Z and (1 − α)X − αZ uncorrelated, and
hence statistically independent since they are Gaussian. We follow the
approach of [12, Sec. II-D] and compute

h(U |Y ) = h(X + αS | X + S + Z)
= h(X + αS − α(X + S + Z) | X + S + Z)
= h((1 − α)X − αZ | X + Z + S)
= h((1 − α)X − αZ | X + Z)
= h(X | X + Z), (6.9)

where the fourth step follows because X + Z, (1 − α)X − αZ, and S
are jointly statistically independent. We similarly compute

h(U |S) = h(X + αS | S) = h(X|S) = h(X). (6.10)
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We can thus achieve the rate

I(U ;Y ) − I(U ;S) = h(U |S) − h(U |Y )
= h(X) − h(X | X + Z)
= I(X ; X + Z)

=
1
2

log
(

1 +
P

N

)
. (6.11)

But (6.11) is the same as the capacity if the interference is known at
both the transmitter and receiver (or the capacity without interference).
Thus, for the AWGN channel with additive interference, the encoder
can transmit at the same rate as if the interference was not present! We
generalize this result to vector channels in the appendix of this section.

6.5 Convexity Properties

We prove the following proposition (see [28, Prop. 1]). This result is
useful, e.g., for optimizing the distributions PU |S(·) and PX|SU (·).

Proposition 6.1. Consider the expression

R(S,U,X,Y ) = I(U ;Y ) − I(U ;S), (6.12)

where the joint distribution of the random variables factors as

PSUXY (a,b,c,d) = PSUX(a,b,c) · PY |SX(d|a,c) (6.13)

for all a,b,c,d. R(S,U,X,Y ) is a concave (or convex-∩) function
of PU |S(·) if PS(·), PX|SU (·), and PY |SX(·) are fixed. Similarly,
R(S,U,X,Y ) is a convex (or convex-∪) function of PX|SU (·) if PS(·),
PU |S(·), and PY |SX(·) are fixed.

Proof. We begin with the second case where I(U ;S) is fixed. We know
that I(U ;Y ) is a convex function of PY |U (·) if PU (·) is fixed. But we
have

PY |U (d|b) =
∑

a,c

PS|U (a|b)PX|SU (c|a,b)PY |SX(d|a,c), (6.14)
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i.e., PY |U (·) is a linear function of PX|SU (·). Thus, R(S,U,X,Y ) is a
convex function of PX|SU (·).

For the first case, −I(U ;S) is clearly concave in PU |S(·). Further-
more, we have I(U ;Y ) = H(Y ) − H(Y |U), where H(Y ) is concave in
PY (·) and H(Y |U) is linear in PU |S(·). But PY (·) is also linear in
PU |S(·), and the sum of two concave functions is concave, so we have
the desired result.

6.6 Converse

We show that RGP in (6.3) is the capacity of the Gelfand–Pinsker
problem. We use Fano’s inequality to bound the rate for reliable com-
munication as (see (3.8) and (3.11))

nR ≤ I(W ;Ŵ )
≤ I(W ;Y n)

=
n∑

i=1

I(WSn
i+1;Y

i) − I(WSn
i ;Y i−1), (6.15)

where the second step follows by the data processing theorem, and
the third step by expanding the sum, canceling terms pair-wise, and
setting Sj

i = [Si,Si+1, . . . ,Sj ] and Y0 = 0. We continue the chain of
(in)equalities (6.15):

nR ≤
n∑

i=1

[
I(WSn

i+1;Y
i−1) + I(WSn

i+1;Yi|Y i−1)
]

−
[
I(WSn

i+1;Y
i−1) + I(Si;Y i−1|WSn

i+1)
]

=
n∑

i=1

I(WSn
i+1;Yi|Y i−1) − I(Si;Y i−1|WSn

i+1)

=
n∑

i=1

[
H(Yi|Y i−1) − H(Yi|Ui)

]
−
[
H(Si|WSn

i+1) − H(Si|Ui)
]

≤
n∑

i=1

[H(Yi) − H(Yi|Ui)] − [H(Si) − H(Si|Ui)]

=
n∑

i=1

I(Ui;Yi) − I(Ui;Si), (6.16)
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where for the second step we have defined Ui = [W,Sn
i+1,Y

i−1], and the
third step follows because Si is independent of W and Sn

i+1. We further
have that Ui − [Xi,Si] − Yi forms a Markov chain. We can bound the
sum (6.16) by n times its maximum term to obtain

R ≤ max
i

[I(Ui;Yi) − I(Ui;Si)]

≤ max
PU|S(·),PX|SU (·)

I(U ;Y ) − I(U ;S). (6.17)

The final step is to use Proposition 6.1. Because I(U ;Y ) − I(U ;S) is
convex in PX|SU (·), one should choose X to be a deterministic function
of U and S, i.e., X = f(U,S) for some f(·).

6.7 Appendix: Writing on Dirty Paper with Vector Symbols

Suppose the channel output is an N × 1 vector

Y = HXX + HSS + Z, (6.18)

where X is a random M × 1 vector, S is a random L × 1 vector, HX

and HS are N × M and N × L matrices, respectively, and Z is a N × 1
Gaussian vector that is statistically independent of S and H, and has
zero mean and nonsingular covariance matrix QZ . Suppose S is a (pos-
sibly non-Gaussian) random vector (see [74]) and that E

[
‖Xi‖2] ≤ P

for i = 1,2, . . . ,n. We define U = X + AHSS, where

A = QXHT
X

(
QZ + HXQXHT

X

)−1 (6.19)

is an M × N matrix, and where X is Gaussian, statistically indepen-
dent of S, and has covariance matrix QX with trace tr

[
QX

]
= P . One

can check that HXX + Z and (I − AHX)X − AZ are uncorrelated,
and hence statistically independent since they are Gaussian. We follow
the same steps as for the scalar Gaussian example to compute

I(U ;Y ) − I(U ;S) =
1
2

log
∣∣∣I + HXQXHT

XQ−1
Z

∣∣∣ . (6.20)

The expression (6.20) is the information rate across the vector channel
if there is no interference, i.e., S = 0 or HS = 0. The final step is to
maximize (6.20) over all choices of QX . We can do this as for the vector
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AWGN channel in Section 3.6. Observe that we can factor the positive
definite matrix Q−1

Z as Q−1/2
Z · Q−1/2

Z , where Q−1/2
Z is a positive definite

matrix [31, p. 406]. Equation (6.20) thus gives

I(U ;Y ) − I(U ;S) =
1
2

log
∣∣∣I + Q−1/2

Z HXQXHT
XQ−1/2

Z

∣∣∣ . (6.21)

The resulting optimization problem has the same form as (3.27) with
H = Q−1/2

Z HX .



7
The Broadcast Channel

7.1 Problem Description

The broadcast channel is depicted in Figure 7.1. There are three
sources, one encoder, and two decoders and sinks. The sources put out
the statistically independent messages W0,W1,W2 with nR0,nR1,nR2
bits, respectively. The message W0 is destined for both sinks, and is
sometimes called the common or public message. The messages W1 and
W2 are destined for sinks 1 and 2, respectively, and are sometimes
called private messages. The encoder maps (w0,w1,w2) to a sequence
xn ∈ X n, and the channel PY1Y2|X(·) puts out two sequences yn

1 ∈ Yn
1

and yn
2 ∈ Yn

2 . Decoder 1 uses yn
1 to compute its estimate (ŵ0(1), ŵ1)

of (w0,w1), and decoder 2 similarly uses yn
2 to compute its estimate

(ŵ0(2), ŵ2) of (w0,w2). The problem is to find the set of rate-tuples
(R0,R1,R2) for which one can make

Pe = Pr
[
(Ŵ0(1),Ŵ0(2),Ŵ1,Ŵ2) )= (W0,W0,W1,W2)

]
(7.1)

an arbitrarily small positive number. The closure of the region of achiev-
able (R0,R1,R2) is the broadcast channel capacity region CBC.

The broadcast channel has important applications. For example,
consider the design of a base station for a cellular radio system. If the

335
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Sink 1Decoder 1

Sink 2Decoder 2

EncoderSource 1

Source 0

Source 2

Channel

Fig. 7.1 The two-receiver broadcast channel.

base station transmits to two mobile stations, the model of Figure 7.1
describes the essence of the coding problem. One can easily extend the
model to include three or more mobile stations, but we will study only
the two-receiver problem. Despite intense research activity on broad-
cast channels spanning over three decades, the problem is still open!
We will study the problem by focusing on several special cases. The
theory for each of these cases gives insight into how one should code
in general.

7.2 Preliminaries

7.2.1 Basic Properties

The broadcast channel was studied by Cover in [15], who described
several interesting properties and methods for this channel. One sim-
ple property is that one can convert some fraction of the R0 bits
to R1 and/or R2 bits. Thus, if (R0,R1,R2) is achievable, then so is
(α0R0,R1 + α1R0,R2 + α2R0), where αi ≥ 0, i = 0,1,2, and α0 + α1 +
α2 = 1.

A second important property is that the capacity region CBC

depends only on the marginals PY1|X(·) and PY2|X(·). That is, CBC

is the same for the channels PỸ1Ỹ2|X(·) and PY1Y2|X(·) if

PỸ1|X(b|a) = PY1|X(b|a) for all (a,b) ∈ X × Y1

PỸ2|X(c|a) = PY2|X(c|a) for all (a,c) ∈ X × Y2. (7.2)
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To prove this claim, suppose the channel is PY1Y2|X(·) and let

E1 =
{
(Ŵ0(1),Ŵ1) )= (W0,W1)

}

E2 =
{
(Ŵ0(2),Ŵ2) )= (W0,W2)

}
(7.3)

so that Pe1 = Pr[E1] and Pe2 = Pr[E2] are the respective error probabil-
ities of decoders 1 and 2. We have Pe = Pr[E1 ∪ E2] and, by elementary
set inclusion, we also have (see [18, p. 454])

max(Pe1,Pe2) ≤ Pe ≤ Pe1 + Pe2. (7.4)

Thus, Pe is small if and only if both Pe1 and Pe2 are small. But Pe1 and
Pe2 depend only on the respective PY1|X(·) and PY2|X(·), so the same
code for any PY1Y2|X(·) with marginals PY1|X(·) and PY2|X(·) gives the
same Pe1 and Pe2. This proves the claim.

The above property lets one restrict attention to broadcast channels
where, for example, Y1 − X − Y2 forms a Markov chain. However, to
prove capacity theorems it is sometimes useful to carefully choose the
dependencies between Y1 and Y2 given X.

7.2.2 A Bound on Binning Rates

We consider a channel coding “dual” of Slepian–Wolf binning. Sup-
pose we generate codewords xn(w1,v1) and yn(w2,v2) exactly as in
Section 4.3. Recall that for source coding we required the bins to be
small enough so that there is at most one typical (xn,yn) in each bin.
We now ask a different question: how large must the bins be to ensure
that there is at least one typical (xn,yn) in each bin? The probability
that there is no typical (xn,yn) in bin (w1,w2) is

Pbin,e(w1,w2) = Pr

[
⋂

v1,v2

{(Xn(w1,v1),Y n(w2,v2)) /∈ Tn
ε (PXY )}

]
.

(7.5)

The difficulty in upper bounding (7.5) is that it involves an intersection
of dependent events, rather than a union. One approach for treating
such problems is the second moment method [3] . We use this method
in the appendix of this section to show that Pbin,e(w1,w2) is small if n
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is large, ε is small, and the binning rates satisfy (see [23])

R′
1 + R′

2 > I(X;Y ). (7.6)

7.2.3 A Conditional Typicality Bound

We will need a result related to the Markov Lemma in Section 5.2.

Theorem 7.1. Suppose 0 ≤ ε1 < ε2 ≤ µUXY , Xi is emitted by a DMS
PX|U (·|ui) for i = 1,2, . . . ,n, and (un,yn) ∈ Tn

ε1(PUY ). We have

(1 − δε1,ε2(n)) 2−n[I(X;Y |U)+2ε2H(X|U)]

≤ Pr
[
Xn ∈ Tn

ε2(PUXY |un,yn)
∣∣Un = un

]
≤ 2−n[I(X;Y |U)−2ε2H(X|U)],

(7.7)

where

δε1,ε2(n) = 2|U||X ||Y|exp
(

−n · (ε2 − ε1)2

1 + ε1
· µUXY

)
. (7.8)

Proof. The upper bound follows by (1.25) and (1.26):

Pr
[
Xn ∈ Tn

ε2(PUXY |un,yn)
∣∣Un = un

]

=
∑

xn∈T n
ε2 (PUXY |un,yn)

Pn
X|U (xn|un)

≤ 2nH(X|UY )(1+ε2) 2−nH(X|U)(1−ε2)

≤ 2−n[I(X;Y |U)−2ε2H(X|U)]. (7.9)

The lower bound also follows from (1.25) and (1.26).

7.3 The Capacity for R1 = R2 = 0

Suppose one is interested in broadcasting in the usual sense that there
is only one message W0. This problem is essentially the same as coding
for a DMC in Section 3.4.

Code Construction: Generate 2nR0 codewords xn(w0), w0 =
1,2, . . . ,2nR0 , by choosing the n · 2nR0 symbols xi(w) independently
using a distribution PX(·).
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Encoder: Given w0, transmit xn(w0).

Decoder 1: Given yn
1 , try to find a w̃0 such that (xn(w̃0),yn

1 ) ∈
Tn

ε (PXY1). If there is one or more such index, then choose one and
put out the corresponding w̃0 as ŵ0(1). If there is no such index, then
put out ŵ0(1) = 1.

Decoder 2: Proceed as decoder 1, but with yn
2 , Tn

ε (PXY2), and ŵ0(2).

Analysis: Virtually the same analysis as in Section 3.4 establishes that
one can achieve rates up to

R0 = max
PX(·)

min(I(X;Y1), I(X;Y2)) . (7.10)

For the converse, from Section 3.8 we know that reliable communication
requires

nR0 ≤ I(W0;Ŵ0(1))
≤ I(Xn;Y n

1 )

=
n∑

i=1

H(Y1i|Y i−1
1 ) − H(Y1i|Xi)

≤
n∑

i=1

H(Y1i) − H(Y1i|Xi)

= n
n∑

i=1

1
n

I(Xi;Y1i)

≤ nI(X̄; Ȳ1), (7.11)

where the last step follows by the convexity of mutual information and
by setting

PX̄Ȳ1Ȳ2
(a,b,c) =

[
1
n

n∑

i=1

PXi(a)

]
PY1Y2|X(b,c|a) (7.12)

for all appropriate a,b,c. We similarly have nR0 ≤ nI(X̄; Ȳ2) so that

R0 ≤ max
PX(·)

min(I(X;Y1), I(X;Y2)) . (7.13)

The rate (7.10) is thus the capacity. Note that the capacity is in general
smaller than min(C1,C2), where C1 and C2 are the capacities of the
respective channels PY1|X and PY2|X .
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7.4 An Achievable Region for R0 = 0 via Binning

We construct a codebook for the case where there is no common mes-
sage. Consider a distribution PU1U2(·), and let U1 and U2 be the respec-
tive alphabets of U1 and U2. Consider also a function f(·) that maps
symbols in U1 × U2 to symbols in X . We write X = f(U1,U2) and
Xn = fn(Un

1 ,Un
2 ) to mean that Xi = f(U1i,U2i) for i = 1,2, . . . ,n. We

generate codewords as for the Slepian–Wolf problem.

Code Construction: Generate 2n(R1+R′
1) codewords un

1 (w1,v1), w1 =
1,2, . . . ,2nR1 , v1 = 1,2, . . . ,2nR′

1 , by choosing the symbols u1i(w1,v1)
independently using PU1(·). Similarly generate 2n(R2+R′

2) codewords
un

2 (w2,v2), w2 = 1,2, . . . ,2nR2 , v2 = 1,2, . . . ,2nR′
2 , using PU2(·).

Encoder: Given w1 and w2, try to find a pair (v1,v2) such that
(un

1 (w1,v1),un
2 (w2,v2)) ∈ Tn

ε (PU1U2). If there is one or more such
(v1,v2), choose one and transmit xn = fn(un

1 (w1,v1),un
2 (w2,v2)). In

practice, the decoder might know ahead of time which (v1,v2) is cho-
sen. However, this is not necessary since the receivers will discard these
indexes, as shown in the next step. One can, in fact, choose the (v1,v2)
ahead of time for all bins, i.e., the pair (v1,v2) is a function of (w1,w2).

Decoder 1: Given yn
1 , try to find a pair (w̃1, ṽ1) such that

(un
1 (w̃1, ṽ1),yn

1 ) ∈ Tn
ε (PU1Y1). If there is one or more such pair, then

choose one and put out the corresponding w̃1 as ŵ1. If there is no such
pair, then put out ŵ1 = 1.

Decoder 2: Proceed as decoder 1, except replace the index “1” by “2”
everywhere.

Analysis: Let 0 < ε1 < ε < µU1U2XY1Y2 , where µU1U2XY1Y2 is defined as
usual to be the minimum positive probability of PU1U2XY1Y2(·). Using
(7.6), we find that the encoder finds an appropriate pair (v1,v2) with
probability close to 1 as long as n is large, ε1 is small, and

R′
1 + R′

2 > I(U1;U2). (7.14)

So suppose the encoder was successful, and the likely event that

(un
1 (w1,v1),un

2 (w2,v2),xn(un
1 ,un

2 ),yn
1 ,yn

2 ) ∈ Tn
ε1(PU1U2XY1Y2) (7.15)



7.4 An Achievable Region for R0 = 0 via Binning 341

occurred. (We remark that the event (7.15) is likely to occur only
if PU1U2XY1Y2(·) factors as PU1U2X(·)PY1Y2|X(·).) Decoder 1 is likely
to make an error if there is a pair w̃1, ṽ1 with w̃1 )= w1 such that
(un

1 (w̃1, ṽ1),yn
1 ) ∈ Tn

ε (PU1Y1). But the probability of this event can be
made small if

R1 + R′
1 < I(U1;Y1). (7.16)

The corresponding event for decoder 2 can be made to have small
probability if

R2 + R′
2 < I(U2;Y2). (7.17)

To see what rates (R1,R2) are achievable with (7.14)–(7.17), suppose
we choose R′

1 = αI(U1;U2) for 0 ≤ α ≤ 1. We then achieve

(R1,R2) = ( I(U1;Y1) − αI(U1;U2), I(U2;Y2) − (1 − α)I(U1;U2) ).

Alternatively, the achievable rate region is defined by the pentagon

0 ≤ R1 ≤ I(U1;Y1)
0 ≤ R2 ≤ I(U2;Y2)
R1 + R2 ≤ I(U1;Y1) + I(U2;Y2) − I(U1;U2), (7.18)

where [U1,U2] − X − [Y1,Y2] forms a Markov chain. This result is due
to Marton [43] and the region is depicted in Figure 7.2.

Consider, e.g., the corner point with α = 1. Note that the rate R1 =
I(U1;Y1) − I(U1;U2) is identical to the Gelfand-Pinsker rate RGP if we

Fig. 7.2 An achievable region for R0 = 0.
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Fig. 7.3 An encoder structure inspired by the Gelfand-Pinsker problem and solution.

consider un
2 to be interference known noncausally at the transmitter.

This suggests designing an encoder as shown in Figure 7.3. The overall
encoder consists of two encoders: one for un

2 and one for un
1 based on

Gelfand-Pinsker coding. The output xn
1 is a function of un

1 and un
2 as in

the Gelfand-Pinsker problem. We remark that, in general, decoders 1
and 2 will be able to decode only the messages w1 and w2, respectively.
The next coding scheme we consider, superposition coding, has one
decoder decoding both messages.

Example 7.1. Suppose the broadcast channel is deterministic in the
sense that

Y1 = f1(X) and Y2 = f2(X) (7.19)

for some functions f1(·) and f2(·). We can choose U1 = Y1 and U2 = Y2
since [U1,U2] − X − [Y1,Y2] forms a Markov chain. The bounds (7.18)
are thus

0 ≤ R1 ≤ H(Y1)
0 ≤ R2 ≤ H(Y2)
R1 + R2 ≤ H(Y1Y2). (7.20)

The resulting region turns out to be the capacity region CBC for this
problem. Thus, binning is optimal for deterministic broadcast channels.

7.5 Superposition Coding

We next introduce superposition coding that is a method for “stack-
ing” codebooks. This method turns out to be optimal for an important
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class of channels known as degraded broadcast channels. Furthermore,
a judicious combination of superposition coding and binning gives the
currently best achievable rate region for broadcast channels. We develop
this region in Section 7.8.

For simplicity, suppose for now that R2 = 0. Consider a distribution
PUXY1Y2(·) that factors as PUX(·)PY1Y2|X(·), and where the alphabet of
U is U .

Code Construction: Consider PUX(·). Generate 2nR0 codewords un(w0),
w0 = 1,2, . . . ,2nR0 , by using PU (·). Next, for every un(w0), generate
2nR1 codewords xn(w0,w1) by choosing the symbols xi(w0,w1) inde-
pendently at random according to PX|U (·|ui(w0)) for i = 1,2, . . . ,n and
w1 = 1,2, . . . ,2nR1 . This second step is called superposition coding, and
it is depicted in Figure 7.4. In the “space” of all codewords, one can
view the un(w0) as cloud centers, and the xn(w0,w1) as satellites (see
Figure 7.5).

Encoder: Given w0 and w1, transmit xn(w0,w1).

Decoder 1: Given yn
1 , try to find a pair (w̃0, w̃1) such that

(un(w̃0),xn(w̃0, w̃1),yn
1 ) ∈ Tn

ε (PUXY1). If there is one or more such pair,
then choose one and call it (ŵ0(1), ŵ1). If there is no such pair, then
put out (ŵ0(1), ŵ1) = (1,1).

Decoder 2: Given yn
2 , try to find a w̃0 such that (un(w̃0),yn

2 ) ∈ Tn
ε (PUY2).

If there is one or more such index, then choose one and call it ŵ0(2).
If there is no such index, then put out ŵ0(2) = 1.

Cloud Centers

Satellites

Fig. 7.4 Codebooks for superposition coding.
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Fig. 7.5 Space of codewords for superposition coding (reproduced with modifications
from [15, Figure 4]).

Analysis: Let 0 < ε1 < ε < µUXY1Y2 . We have (un(w0),xn(w0,w1),
yn
1 ,yn

2 ) ∈ Tn
ε1(PUXY1Y2) with probability close to one for large n. Con-

sider first decoder 2. The probability that this decoder finds an incorrect
w̃0 can be made small if

R0 < I(U ;Y2). (7.21)

Next, consider decoder 1 which must decode both w0 and w1. We split
the potential error events into three disjoint parts: first, that ŵ0(1) )=
w0, ŵ1 = w1; second, that ŵ0(1) = w0, ŵ1 )= w1; and finally that ŵ0(1) )=
w0, ŵ1 )= w1. The probability of the first event is

Pr




⋃

w̃0 '=w0

{(Un(w̃0),Xn(w̃0,w1),yn
1 ) ∈ Tn

ε (PUXY1)}





≤ 2n[R0−I(UX;Y1)+2εH(UX)]. (7.22)

The probability of the second event is

Pr




⋃

w̃1 '=w1

{(un(w0),Xn(w0, w̃1),yn
1 ) ∈ Tn

ε (PUXY1)}





≤ 2n[R1−I(X;Y1|U)+2εH(X|U)], (7.23)
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where we have used (7.7). The probability of the third event is

Pr




⋃

w̃0 '=w0

⋃

w̃1 '=w1

{(Un(w̃0),Xn(w̃0, w̃1),yn
1 ) ∈ Tn

ε (PUXY1)}





≤ 2n[R0+R1−I(UX;Y1)+2εH(UX)]. (7.24)

Note that (7.24) makes (7.22) unnecessary. Combining (7.21)–(7.24),
we have that (R0,R1,0) ∈ CBC if

0 ≤ R0 ≤ I(U ;Y2)
0 ≤ R1 ≤ I(X;Y1|U)
R0 + R1 ≤ I(X;Y1), (7.25)

where U − X − [Y1,Y2] forms a Markov chain. The above coding
scheme is due to Bergmans [7] and is based on work by Cover [15].
One can restrict attention to U satisfying |U| ≤ |Y| + 2. Moreover, the
region (7.25) turns out to be the capacity region when R2 = 0 (see [35]).
To get a general achievable region, we use the first property described in
Section 7.2.1: we convert some of the R0 bits into R2 bits. The resulting
region of (R0,R1,R2) is simply (7.25) with R0 replaced by R0 + R2.

7.6 Degraded Broadcast Channels

Consider next a class of channels called degraded channels that have
the special property that decoder 1 can decode anything that decoder 2
can decode. A broadcast channel is said to be physically degraded if

X − Y1 − Y2,

forms a Markov chain. A broadcast channel PY1Y2|X(·) is said to be
degraded or stochastically degraded if it has the same marginals PY1|X(·)
and PY2|X(·) as some physically degraded channel. Another way of stat-
ing this is that

PY2|X(c|a) =
∑

b∈Y1

PY1|X(b|a)P ∗
Y2|Y1

(c|b), (7.26)

for some P ∗
Y2|Y1

(·). The capacity region of a degraded broadcast channel
is thus the same as its physically degraded counterpart, and we will
study this physically degraded channel.
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Consider, then, a physically degraded broadcast channel PY1Y2|X(·).
Suppose we encode using superposition coding as described above.
We have

I(U ;Y2) ≤ I(U ;Y1) (7.27)

because U − X − Y1 − Y2 forms a Markov chain. We thus also have

I(U ;Y2) + I(X;Y1|U) ≤ I(U ;Y1) + I(X;Y1|U) = I(X;Y1), (7.28)

which means that the third bound in (7.25) is unnecessary. The result-
ing achievable region is the set of non-negative (R0,R1,R2) satisfying

R1 ≤ I(X;Y1|U)
R0 + R2 ≤ I(U ;Y2), (7.29)

where U − X − Y1 − Y2 forms a Markov chain. The union of these
achievable regions over all PUX(·) turns out to be the capacity region
of the degraded broadcast channel [27]. We prove the converse theorem
in the appendix of this section.

Example 7.2. Consider the (physically degraded) binary symmetric
broadcast channel (BSBC). This channel has X = Y1 = Y2 = {0,1},

Y1 = X ⊕ Z1 and Y2 = X ⊕ Z2, (7.30)

where PZ1(1) = 1 − PZ1(0) = p1, PZ2(1) = 1 − PZ2(0) = p2, and X, Z1,
and Z2 are statistically independent. Suppose that p1 ≤ p2 ≤ 1/2. We
can convert (7.30) to a physically degraded channel by writing

Y1 = X ⊕ Z1 and Y2 = X ⊕ Z1 ⊕ Z ′
2, (7.31)

where PZ′
2
(1) = 1 − PZ′

2
(0) = p2 − p1 and Z ′

2 is independent of X and
Z1. We choose PU (0) = PU (1) = 1/2 and set Pr[X )= U ] = q. Evaluating
(7.29), we have

R1 ≤ H2(q ∗ p1) − H2(p1)
R0 + R2 ≤ 1 − H2(q ∗ p2), (7.32)

where p ∗ q = p(1 − q) + (1 − p)q. This region is depicted in Figure 7.6,
and it defines the capacity region of this channel [69, 70].
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Fig. 7.6 The capacity region of a BSBC.

7.7 Coding for Gaussian Channels

This section describes two coding methods for scalar additive white
Gaussian noise (AWGN) broadcast channels and one method for vector
AWGN broadcast channels. The methods are based on superposition
coding and binning, and the motivation for describing the different
methods is to illustrate two main points. First, we show that one can
achieve capacity in more than one way for scalar AWGN channels.
Second, we show how to apply binning to vector AWGN channels.

7.7.1 Superposition Coding for Scalar AWGN Channels

Suppose we have a (scalar) AWGN broadcast channel

Y1 = X + Z1

Y2 = X + Z2, (7.33)

where X is the set of real numbers, we have the per-symbol power
(or energy) constraint E

[
X2] ≤ P , and Z1 and Z2 are (possibly corre-

lated) Gaussian random variables with respective variances σ2
1 and σ2

2.
Suppose that σ2

1 ≤ σ2
2. We can convert (7.33) to a physically degraded

channel by writing

Y1 = X + Z1

Y2 = X + Z1 + Z ′
2, (7.34)

where Z ′
2 is Gaussian, independent of X and Z1, and has variance

σ2
2 − σ2

1. For superposition coding, we choose

X = U + V, (7.35)
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where U and V are independent Gaussian random variables with respec-
tive variances αP and (1 − α)P for some α satisfying 0 ≤ α ≤ 1. We
consider (7.29) and compute

I(U ;Y2) = h(Y2) − h(Y2|U)

=
1
2

log
(
2πe [P + σ2

2]
)

− 1
2

log
(
2πe [(1 − α)P + σ2

2]
)

=
1
2

log
(

1 +
αP

(1 − α)P + σ2
2

)
(7.36)

I(X;Y1|U) = h(Y1|U) − h(Y1|X)

=
1
2

log
(
2πe [(1 − α)P + σ2

1]
)

− 1
2

log
(
2πeσ2

1
)

=
1
2

log
(

1 +
(1 − α)P

σ2
1

)
. (7.37)

The achievable (R1,R2) are determined by varying α, and they are
depicted in Figure 7.7. Observe that the region dominates the time-
sharing region, whose boundary is given by the dashed line. One can
show that (7.36) and (7.37) define the capacity region by using Shan-
non’s entropy power inequality (see the appendix of this section).

Finally, we point out the following interesting fact about (7.35). We
can encode by generating two code books of sizes 2nR1 and 2nR2 with
codewords vn(w1), w1 = 1,2, . . . ,2nR1 , and un(w2), w2 = 1,2, . . . ,2nR2 ,
and by using xn = fn(vn(w1),un(w2)) for some per-letter function f(·).
This superposition coding scheme is closely related to the scheme
described above, but it is simpler. Superposition coding is often done
either as in Section 7.5 or as suggested by (7.35).

Fig. 7.7 The capacity region of an AWGN broadcast channel.
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7.7.2 Binning for Scalar AWGN Channels

We use binning for the AWGN broadcast channel, as described in
Section 7.4. Consider the encoder structure depicted in Figure 7.3. We
choose four random variables:

U2 Gaussian with variance αP

X1 Gaussian, independent of U2, with variance (1 − α)P
U1 = X1 + βU2

β = (1 − α)P
/
[(1 − α)P + σ2

1]
X = X1 + U2.

Using (7.18) and Section 6.4, we compute

I(U2;Y2) =
1
2

log
(

1 +
αP

(1 − α)P + σ2
2

)

I(U1;Y1) − I(U1;U2) =
1
2

log
(

1 +
(1 − α)P

σ2
1

)
. (7.38)

That is, we can achieve all points inside the capacity region of the
AWGN broadcast channel by using a Gelfand-Pinsker encoder!

7.7.3 Binning for Vector AWGN Channels

Motivated by the above result, we use the same approach for AWGN
vector broadcast channels. We use column vectors to represent the chan-
nel input and outputs, and write QX for E

[
X XT

]
. The model is

Y 1 = H1 X + Z1

Y 2 = H2 X + Z2, (7.39)

where X has length M , Y 1 has length N1, Y 2 has length N2, H1 has
dimension N1 × M , H2 has dimension N2 × M , and Z1 and Z2 are
(possible correlated) Gaussian random vectors with respective lengths
N1 and N2, and with respective positive-definite covariance matrices
QZ1

and QZ2
. We consider the case M ≥ N1 and M ≥ N2. The power

constraint is E
[
‖X‖2] ≤ P or, equivalently, tr

[
QX

]
≤ P .

Note that the channel is not necessarily degraded, so one cannot
necessarily expect superposition coding to be optimal. However, recall
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from the appendix of Section 6 that one can operate a Gelfand-Pinsker
encoder at the same rate as if the interference was not present. We
choose four random variables:

U2 Gaussian
X1 Gaussian, independent of U2

U1 = X1 + BU2

B = QX1
HT

1
[
QZ1

+ H1QX1
HT

1
]−1

X = X1 + U2.

Using (7.18) and the appendix of Section 6, we compute

I(U2;Y 2) =
1
2

log
det
(
QZ2

+ H2(QX1
+ QU2

)HT
2
)

det
(
QZ2

+ H2QX1
HT

2
)

I(U1;Y 1) − I(U1;U2) =
1
2

log
det
(
QZ1

+ H1QX1
HT

1
)

detQZ1

. (7.40)

It remains to optimize over QX1
and QU2

. Recent research [66] has
shown that (7.40) defines the capacity region for this channel when
R0 = 0.

7.8 Marton’s Achievable Region

The best known achievable-rate region for broadcast channels is due
to Marton [19, 41, 43] and it requires using superposition coding and
binning. We briefly develop this region here. A discussion of some of
the subtleties of Marton’s region is given in [41, Sec. III.A].

Code Construction: Consider a distribution PTU1U2(·) and a func-
tion f(·) mapping symbols in T × U1 × U2 to symbols in X . Gen-
erate 2nR0 codewords tn(w0), w0 = 1,2, . . . ,2nR0 , by using PT (·).
Next, for every tn(w0), use the code construction of Section 7.4.
Generate 2n(R1+R′

1) codewords un
1 (w0,w1,v1), w1 = 1,2, . . . ,2nR1 , v1 =

1,2, . . . ,2nR′
1 , by choosing the symbols u1i(w0,w1,v1) indepen-

dently using PU1|T (·|ti(w0)). Similarly generate 2n(R2+R′
2) code-

words un
2 (w0,w2,v2), w2 = 1,2, . . . ,2nR2 , v2 = 1,2, . . . ,2nR′

2 , by using
PU2|T (·|ti(w0)).
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Encoder: Given w0, w1, and w2, try to find a pair (v1,v2) such
that (tn(w0),un

1 (w0,w1,v1),un
2 (w0,w2,v2)) ∈ Tn

ε (PTU1U2). If there is
one or more such (v1,v2), choose one and transmit xn = fn(tn(w0),
un

1 (w0,w1,v1),un
2 (w0,w2,v2)).

Decoder 1: Given yn
1 , try to find a triple (w̃0, w̃1, ṽ1) such that

(tn(w̃0),un
1 (w̃0, w̃1, ṽ1),yn

1 ) ∈ Tn
ε (PTU1Y1). If there is one or more such

triple, then choose one and put out the corresponding (w̃0, w̃1) as
(ŵ0(1), ŵ1). If there is no such pair, then put out (ŵ0(1), ŵ1) = (1,1).

Decoder 2: Proceed as decoder 1, except replace the index “1” by “2”
everywhere.

Using the analysis procedure that we are by now accustomed to,
the rate bounds are (see (7.14), (7.16), (7.17), and (7.25))

R′
1 + R′

2 > I(U1;U2|T ) (7.41)
R1 + R′

1 < I(U1;Y1|T ) (7.42)
R0 + R1 + R′

1 < I(TU1;Y1) (7.43)
R2 + R′

2 < I(U2;Y2|T ) (7.44)
R0 + R2 + R′

2 < I(TU2;Y2). (7.45)

We can remove R′
1 and R′

2 to get the bounds

R1 < I(U1;Y1|T ) (7.46)
R2 < I(U2;Y2|T ) (7.47)
R1 + R2 < I(U1;Y1|T ) + I(U2;Y2|T ) − I(U1;U2|T ) (7.48)
R0 + R1 < I(TU1;Y1) (7.49)
R0 + R2 < I(TU2;Y2) (7.50)
R0 + R1 + R2 < I(TU1;Y1) + I(U2;Y2|T ) − I(U1;U2|T ) (7.51)
R0 + R1 + R2 < I(U1;Y1|T ) + I(TU2;Y2) − I(U1;U2|T ). (7.52)
2R0 + R1 + R2 < I(TU1;Y1) + I(TU2;Y2) − I(U1;U2|T ). (7.53)

However, it turns out that we can do better. Recall from Section 7.2.1
that if (R0,R1,R2) is achievable, then so is (α0R0,R1 + α1R0,R2 +
α2R0), where αi ≥ 0, i = 0,1,2, and α0 + α1 + α2 = 1. Applying this
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idea to (7.46)–(7.52), we get the rate bounds (see [41, Thm. 5])

R0 + R1 < I(TU1;Y1) (7.54)
R0 + R2 < I(TU2;Y2) (7.55)
R0 + R1 + R2 < I(TU1;Y1) + I(U2;Y2|T ) − I(U1;U2|T ) (7.56)
R0 + R1 + R2 < I(U1;Y1|T ) + I(TU2;Y2) − I(U1;U2|T ) (7.57)
2R0 + R1 + R2 < I(TU1;Y1) + I(TU2;Y2) − I(U1;U2|T ). (7.58)

Finally, we can take the closure of the union over all PTU1U2(·) and
all f(·) of the rates satisfying (7.54)–(7.58). The resulting region is
Marton’s achievable-rate region.

7.9 Capacity Region Outer Bounds

A simple outer bound on CBC was given by Cover [15]. Clearly, based on
our results for a DMC, one must have R0 + R1 ≤ maxPX(·) I(X;Y1) and
R0 + R2 ≤ maxPX(·) I(X;Y2). However, rather than optimizing PX(·)
for each mutual information separately, the same steps as in (7.11) and
(7.12) can be used to show that one can consider the same PX(·) for
both bounds simultaneously. One can further add a bound based on
letting the receivers cooperate. Summarizing the result, let R(PX) be
the set of (R0,R1,R2) permitted by

R0 + R1 ≤ I(X;Y1)
R0 + R2 ≤ I(X;Y2)

R0 + R1 + R2 ≤ I(X;Y1Y2), (7.59)

when the distribution PX(·) is fixed. The result is

CBC ⊆
⋃

PX(·)

R(PX). (7.60)

7.9.1 Sato’s Outer Bound

Another simple but useful bound on CBC was determined by Sato [54].
Let P(PY1|X ,PY2|X) be the set of broadcast channels that have the
marginals PY1|X(·) and PY2|X(·). Suppose we let the receivers cooperate



7.9 Capacity Region Outer Bounds 353

for any channel in P(PY1|X ,PY2|X). Sato’s sum-rate bound is

R0 + R1 + R2 ≤ minmax
PX(·)

I(X;Y1Y2), (7.61)

where the minimization is over all PY1Y2|X(·) ∈ P(PY1|X ,PY2|X).

7.9.2 Körner and Marton’s Outer Bound

Yet a third outer bound is due to Körner and Marton [43, Thm. 5]. Fol-
lowing similar steps as in Section 6.6, reliable communication requires

n(R1 + R2) ≤ I(W1;Ŵ1) + I(W2;Ŵ2)

≤ I(W1;Y n
1 W2) + I(W2;Y n

2 )

=
n∑

i=1

I(W1;Y1i|W2Y
n
1(i+1))

+
n∑

i=1

I(W2Y
n
1(i+1);Y

i
2 ) − I(W2Y

n
1i ;Y

i−1
2 ), (7.62)

where the third step follows by setting Y20 = 0. We continue the chain
of (in)equalities (7.62):

n(R1 + R2) ≤
n∑

i=1

I(W1;Y1i|W2Y
n
1(i+1))

+
[
I(W2Y

n
1(i+1);Y

i−1
2 ) + I(W2Y

n
1(i+1);Y2i|Y i−1

2 )
]

−
[
I(W2Y

n
1(i+1);Y

i−1
2 ) + I(Y1i;Y i−1

2 |W2Y
n
1(i+1))

]

=
n∑

i=1

I(W1;Y1i|W2Y
n
1(i+1))

+
[
I(W2Y

n
1(i+1);Y2i|Y i−1

2 ) − I(Y1i;Y i−1
2 |W2Y

n
1(i+1))

]

=
n∑

i=1

[
H(Y2i|Y i−1

2 )−H(Y2i|Ui)
]
+[H(Y1i|Ui)−H(Y1i|Xi)]

≤
n∑

i=1

[H(Y2i) − H(Y2i|Ui)] + [H(Y1i|Ui) − H(Y1i|XiUi)]

=
n∑

i=1

I(Ui;Y2i) + I(Xi;Y1i|Ui), (7.63)
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where for the second step we have defined Ui = [W2,Y n
1(i+1),Y

i−1
2 ]. We

further have that Ui − Xi − [Y1i,Y2i] forms a Markov chain. Combining
(7.63) with a few more steps, one can show that, in the plane defined
by R0 = 0, CBC is inside the set of non-negative (R1,R2) satisfying

R1 ≤ I(X;Y1)
R2 ≤ I(U ;Y2)

R1 + R2 ≤ I(X;Y1|U) + I(U ;Y2), (7.64)

for some PUXY1Y2(·) that factors as PUX(·)PY1Y2|X(·), and where |U|≤
|X | + 2.

7.10 Appendix: Binning Bound and Capacity Converses

7.10.1 Bound on Binning Rates

Consider Pbin,e(w1,w2) given in (7.5). Let I(v1,v2) be the indicator
random variable that the event

{(Xn(w1,v1),Y n(w2,v2)) ∈ Tn
ε (PXY )} (7.65)

occurred. Let S =
∑

v1,v2
I(v1,v2), S̄ = E [S], and Var[S] =

E
[
(S − S̄)2

]
= E

[
S2] − S̄2. We bound

Pbin,e(w1,w2) = Pr[S = 0]
≤ Pr

[
(S − S̄)2 ≥ S̄2]

≤ Var[S]
/
S̄2, (7.66)

where the last step follows by the Markov inequality for non-negative
random variables: Pr [W ≥ α] ≤ E [W ]/α. We bound

S̄ =
∑

v1,v2

E [I(v1,v2)]

=
∑

v1,v2

Pr[(Xn,Y n) ∈ Tn
ε (PXY )]

≥
∑

v1,v2

(1 − δε(n)) · 2−n[I(X;Y )+3εH(XY )]

= (1 − δε(n)) · 2n[R′
1+R′

2−I(X;Y )−3εH(XY )]. (7.67)
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We also have

Var[S] =
∑

v1,v2

∑

ṽ1,ṽ2

{E [I(v1,v2)I(ṽ1, ṽ2)] − E [I(v1,v2)]E [I(ṽ1, ṽ2)]} .

(7.68)

Observe that if ṽ1 )= v1 and ṽ2 )= v2, then I(v1,v2) and I(ṽ1, ṽ2) are
independent, and the summand in (7.68) is zero. Next, if ṽ1 )= v1 but
ṽ2 = v2, then we can bound

E [I(v1,v2)I(ṽ1, ṽ2)] = Pr[{I(v1,v2) = 1} ∩ {I(ṽ1,v2) = 1}]

= Pr[I(v1,v2) = 1] · Pr
[
I(ṽ1,v2) = 1

∣∣I(v1,v2) = 1
]

≤ 2−n[I(X;Y )−3εH(XY )] · Pr
[
(Xn,yn) ∈ Tn

ε (PXY )
∣∣yn ∈ Tn

ε (PY )
]

≤ 2−n[2I(X;Y )−3εH(XY )−2εH(X)]. (7.69)

By symmetry, we can derive a similar bound for ṽ1 = v1 and ṽ2 )= v2.
Finally, if ṽ1 = v1 and ṽ2 = v2, then we have

E [I(v1,v2)I(ṽ1, ṽ2)] = E [I(v1,v2)]
= Pr[(Xn,Y n) ∈ Tn

ε (PXY )]

≤ 2−n[I(X;Y )−3εH(XY )]. (7.70)

Combining the results, we have

Var[S] ≤ 2n(R′
1+R′

2)(2−n[I(X;Y )−3εH(XY )]

+ (2nR′
1 + 2nR′

2) · 2−n[2I(X;Y )−5εH(XY )]). (7.71)

Using (7.66), we also have

Pbin,e(w1,w2)

≤ 2−n(R′
1+R′

2)

(1 − δε(n))2
·
(
2n[I(X;Y )+9εH(XY )] + (2nR′

1 + 2nR′
2) · 2n11εH(XY ))

≤ 2−n[R′
1+R′

2−I(X;Y )−9εH(XY )]

(1 − δε(n))2
+

2nR′
1 + 2nR′

2

(1 − δε(n))2 2n(R′
1+R′

2) · 2n11εH(XY ).

(7.72)
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The second term in (7.72) is small if R′
1 > 0, R′

2 > 0, min(R′
1,R

′
2) >

11εH(XY ), ε > 0, and n is large. We thus find that Pbin,e(w1,w2) can
be made small for R′

1 > 0 and R′
2 > 0 if

R′
1 + R′

2 > I(X;Y ). (7.73)

It remains to consider the cases R′
1 = 0 and R′

2 = 0. For R′
1 = 0,

we have

Pbin,e(w1,w2) = Pr

[
⋂

v2

{(Xn(w1,1),Y n(w2,v2)) /∈ Tn
ε (PXY )}

]
.

(7.74)

But (7.74) is identical to the probability that a rate distortion encoder
does not find an appropriate codeword Y n(w2,v2) that is typical with
the “source” sequence Xn(w1,1). We thus require

R′
2 > I(X;Y ), (7.75)

which is the same as (7.73) with R′
1 = 0. By symmetry, we also get

(7.73) for R′
2 = 0. This completes the proof.

7.10.2 Converse for Degraded Channels

Consider a physically degraded broadcast channel [27]. For reliable
communication, we have

nR1 ≤ I(W1;Y n
1 )

≤ I(W1;Y n
1 W0W2)

= I(W1;Y n
1 |W0W2)

=
n∑

i=1

H(Y1i|W0W2Y
i−1
1 ) − H(Y1i|XiW0W2Y

i−1
1 W1)

=
n∑

i=1

I(Xi;Y1i|U ′
i), (7.76)
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where we have set U ′
i = [W0,W2,Y

i−1
1 ]. Note that U ′

i − Xi − Y1i − Y2i

forms a Markov chain. We similarly bound

n(R0 + R2) ≤ I(W0W2;Y n
2 )

=
n∑

i=1

H(Y2i|Y i−1
2 ) − H(Y2i|W0W2Y

i−1
2 )

≤
n∑

i=1

H(Y2i) − H(Y2i|W0W2Y
i−1
2 Y i−1

1 )

=
n∑

i=1

H(Y2i) − H(Y2i|W0W2Y
i−1
1 )

=
n∑

i=1

I(U ′
i ;Y2i), (7.77)

where the fourth step follows because Y2i − [W0,W2,Y
i−1
1 ] − Y i−1

2
forms a Markov chain for every i. Finally, let I be a random vari-
able that is independent of all other random variables and that takes
on the value i, i = 1,2, . . . ,n, with probability 1/n. Furthermore, let
U = [U ′

I , I], so we can write (7.76) and (7.77) as

R1 ≤ I(XI ;Y1I |U)
R0 + R2 ≤ I(U ′

I ;Y2I |I)
≤ I(U ;Y2I), (7.78)

where the first inequality follows because U includes I. Combining these
results, we find that (R0,R1,R2) must satisfy

R1 ≤ I(XI ;Y1I |U)
R0 + R2 ≤ I(U ;Y2I), (7.79)

where U − XI − Y1I − Y2I forms a Markov chain. This proves the
converse.

7.10.3 Converse for the Scalar AWGN Channel

The entropy power inequality (see Appendix B.7) can be used to show
that the region of (7.36)–(7.38) gives the capacity region of the scalar
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AWGN broadcast channel. The original proof of this result is due to
Bergmans [8]. The following proof is due to El Gamal (unpublished).

Fano’s inequality assures us that for reliable communication, we
must have

nR1 ≤ I(W1;Y n
1 |W0W2)

n(R0 + R2) ≤ I(W0W2;Y n
2 ). (7.80)

We further have

I(W0W2;Y n
2 ) = h(Y n

2 ) − h(Y n
2 |W0W2)

≤
[

n∑

i=1

h(Y2i)

]
− h(Y n

2 |W0W2)

≤ n

2
log(2πe(P + σ2

2)) − h(Y n
2 |W0W2), (7.81)

where the last step follows by the maximum entropy theorem. But we
also have

n

2
log(2πeσ2

2) = h(Zn
2 ) = h(Y n

2 |Xn) ≤ h(Y n
2 |W0W2)

≤ h(Y n
2 ) ≤ n

2
log(2πe(P + σ2

2)) (7.82)

so there must exist an α, 0 ≤ α ≤ 1, such that

h(Y n
2 |W0W2) =

n

2
log
(
2πe [(1 − α)P + σ2

2]
)
. (7.83)

Consider now Y n
2 = Y n

1 + (Z ′′
2 )n, where Z ′′

2i has variance σ2
2 − σ2

1. Using
a conditional version of the entropy power inequality, we bound

I(W1;Y n
1 |W0W2) = h(Y n

1 |W0W2) − n

2
log(2πeσ2

1)

≤ n

2
log2

(
2

2
n h(Y n

2 |W0W2) − 2πe(σ2
2 − σ2

1)
)

− n

2
log(2πeσ2

1)

=
n

2
log2

(
2πe [(1 − α)P + σ2

2] − 2πe(σ2
2 − σ2

1)
)

− n

2
log(2πeσ2

1)

=
n

2
log2

(
2πe [(1 − α)P + σ2

1]
)

− n

2
log(2πeσ2

1). (7.84)
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Combining (7.80), (7.81), (7.83), and (7.84), we have the desired region:

R1 ≤ 1
2

log2

(
1 +

(1 − α)P
σ2

1

)

R0 + R2 ≤ 1
2

log2

(
1 +

αP

(1 − α)P + σ2
2

)
. (7.85)



8
The Multiaccess Channel

8.1 Problem Description

The multiaccess channel (MAC) with two transmitters and three
sources is depicted in Figure 8.1. The sources put out statistically inde-
pendent messages W0,W1,W2 with nR0,nR1,nR2 bits, respectively.
The message W0 is seen by both encoders, and is called the com-
mon message. The messages W1 and W2 appear only at the respective
encoders 1 and 2. Encoder 1 maps (w0,w1) to a sequence xn

1 ∈ X n
1 ,

encoder 2 maps (w0,w2) to a sequence xn
2 ∈ X n

2 , and the channel
PY |X1X2(·) puts out the sequence yn ∈ Yn. The decoder uses yn to
compute its estimate (ŵ0, ŵ1, ŵ2) of (w0,w1,w2), and the problem is to
find the set of rate-tuples (R0,R1,R2) for which one can make

Pe = Pr
[
(Ŵ0,Ŵ1,Ŵ2) )= (W0,W1,W2)

]
(8.1)

an arbitrarily small positive number. The closure of the region of achiev-
able (R0,R1,R2) is the MAC capacity region CMAC.

The MAC can be viewed as being the reverse link of a cellular
radio system, if one views the broadcast channel as being the forward
link (other popular names are uplink for the MAC and downlink for
the broadcast channel). If there are two mobile stations transmitting

360
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SinkDecoderSource 0

Encoder 2Source 2

Encoder 1Source 1

MAC

Fig. 8.1 The two-transmitter MAC with a common message.

to the base station, the model of Figure 8.1 describes the essence of
the coding problem. One can easily extend the model to include three
or more mobile stations, but we will study only the two-transmitter
problem. The common message might represent a common time refer-
ence that lets the mobile stations synchronize their transmissions, in
which case we have R0 = 0. Alternatively, this message might represent
information the mobile stations are “relaying” from one base station to
the next.

8.2 An Achievable Rate Region

The MAC with R0 = 0 was first considered by Shannon in [58, Sec. 17].
The capacity region of the MAC with R0 = 0 was developed by
Ahlswede [1] and Liao [42]. (We remark that Shannon wrote in [58,
Sec. 17] that he had found a “complete and simple solution of the capac-
ity region.”). The capacity region with R0 > 0 was found by Slepian
and Wolf [59], who used superposition coding. We consider the general
problem, where the main trick is to introduce an auxiliary random vari-
able U that represents the code book for W0 (see Figure 8.2). Consider
a distribution PUX1X2Y that factors as PUPX1|UPX2|UPY |X1X2 .

Code Construction: Consider PU (·), where the alphabet of U is U .
Generate 2nR0 codewords un(w0), w0 = 1,2, . . . ,2nR0 , by choosing the
ui(w0) independently using PU (·) for i = 1,2, . . . ,n. For each un(w0),
generate 2nR1 codewords xn

1 (w0,w1), w1 = 1,2, . . . ,2nR1 , by choosing
the x1i(w0,w1) independently using PX1|U (·|ui(w0)) for i = 1,2, . . . ,n.
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Cloud Centers

Satellites

Fig. 8.2 A code book for the MAC with a common message.

Similarly, generate 2nR2 codewords xn
2 (w0,w2) by using PX2|U (·|ui(w0))

for i = 1,2, . . . ,n.

Encoders: Given (w0,w1), encoder 1 transmits xn
1 (w0,w1). Given

(w0,w2), encoder 2 transmits xn
2 (w0,w2).

Decoder: Given yn, try to find a triple (w̃0, w̃1, w̃2) such that

(un(w̃0),xn
1 (w̃0, w̃1),xn

2 (w̃0, w̃2),yn) ∈ Tn
ε (PUX1X2Y ). (8.2)

If one or more such triple is found, choose one and call it (ŵ0, ŵ1, ŵ2).
If no such triple is found, set (ŵ0, ŵ1, ŵ2) = (1,1,1).

Analysis: Let 0 ≤ ε1 < ε < µUX1X2Y . We know that, with probability
close to one, we will have

(un(w0),xn
1 (w0,w1),xn

2 (w0,w2),yn) ∈ Tn
ε1(PUX1X2Y ) (8.3)

for the transmitted triple (w0,w1,w2) as long as PUX1X2Y (·) factors
as specified above. The remaining analysis is similar to that of the
degraded broadcast channel, i.e., one splits the error probability into
seven disjoint events that correspond to the seven different ways in
which one or more of the ŵi, i = 0,1,2, is not equal to wi.

For example, consider the event that there was a w̃0 )= w0 such that

(un(w̃0),xn
1 (w̃0,w1),xn

2 (w̃0,w2),yn) ∈ Tn
ε (PUX1X2Y ). (8.4)
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Note that all three codewords in (8.4) were chosen independent of the
actually transmitted codewords. We can upper bound the probability
of the event (8.4) by
∑

w̃0 '=w0

2−n[I(UX1X2;Y )−2εH(UX1X2)] < 2n[R0−I(UX1X2;Y )+2εH(UX1X2)].

(8.5)

We leave the details of the remaining (and by now familiar) analy-
sis to the reader, and simply state the seven rate bounds for reliable
communication:

R0 ≤ I(X1X2;Y ) (8.6)

R0 + R1 ≤ I(X1X2;Y ) (8.7)

R0 + R2 ≤ I(X1X2;Y ) (8.8)

and

R1 ≤ I(X1;Y |X2U) (8.9)

R2 ≤ I(X2;Y |X1U) (8.10)

R1 + R2 ≤ I(X1X2;Y |U) (8.11)

R0 + R1 + R2 ≤ I(X1X2;Y ), (8.12)

where X1 − U − X2 and U − [X1,X2] − Y form Markov chains. Note
that we are stating the bounds with non-strict inequalities, so we are
already considering approachable rates. Note also that the bounds
(8.6)–(8.8) are redundant because of (8.12), so that we need con-
sider only (8.9)–(8.12). One can further restrict attention to |U|≤
min(|Y| + 3, |X1| · |X2| + 2) (see [19, p. 293 and pp. 310–312], [68,
Appendix B], [67, p. 18]).

The bounds (8.9)–(8.12) describe a region R(PU ,PX1|U ,PX2|U ) with
seven faces, four of which arise from (8.9)–(8.12), and three of which
are non-negativity constraints on the rates (see Figure 8.3). We can
further achieve the union of such regions, i.e., we can achieve

CMAC =
⋃

PU ,PX1|U ,PX2|U

R(PU ,PX1|U ,PX2|U ), (8.13)

where |U|≤ min(|Y| + 3, |X1| · |X2| + 2). We show that (8.13) is the
capacity region in Section 8.4.
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Fig. 8.3 The form of R(PU ,PX1|U ,PX2|U ).

8.3 Gaussian Channel

As an example, consider the additive white Gaussian noise (AWGN)
MAC with

Y = X1 + X2 + Z, (8.14)

where Z is Gaussian, zero mean, unit variance, and independent of the
real random variables X1 and X2. We impose the power (or energy)
constraints

∑n
i=1 E

[
X2

1i

]
/n ≤ P1 and

∑n
i=1 E

[
X2

2i

]
/n ≤ P2. One can

show that the best choice for the random variables in (8.9)–(8.12) is
jointly Gaussian [10]. Let U , V1, and V2 be independent, unit variance,
Gaussian random variables, and define

X1 = (
√

P1ρ1)U +
√

P1(1 − ρ2
1)V1 (8.15)

X2 = (
√

P2ρ2)U +
√

P2(1 − ρ2
2)V2. (8.16)

We have E[UX1]/
√

P1 = ρ1 and E[UX2]/
√

P2 = ρ2, and compute

I(X1;Y |X2U) =
1
2

log
(
1 + P1(1 − ρ2

1)
)

(8.17)

I(X2;Y |X1U) =
1
2

log
(
1 + P2(1 − ρ2

2)
)

(8.18)

I(X1X2;Y |U) =
1
2

log
(
1 + P1(1 − ρ2

1) + P2(1 − ρ2
2)
)

(8.19)

I(X1X2;Y ) =
1
2

log
(
1 + P1 + P2 + 2

√
P1P2 ρ1ρ2

)
. (8.20)
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The resulting capacity region is found by considering all ρ1 and ρ2
with 0 ≤ ρ1 ≤ 1 and 0 ≤ ρ2 ≤ 1.

8.4 Converse

For reliable communication, the rate R1 must satisfy

nR1 ≤ I(W1;Ŵ1)

≤ I(W1;Y n)

≤ I(W1;Y n W0W2)

= I(W1;Y n|W0W2)

=
n∑

i=1

H(Yi|Y i−1W0W2) − H(Yi|Y i−1W0W1W2)

=
n∑

i=1

H(Yi|Y i−1W0W2X
n
2 ) − H(Yi|X1iX2iW0)

≤
n∑

i=1

H(Yi|X2iW0) − H(Yi|X1iX2iW0)

=
n∑

i=1

I(X1i;Yi|X2iW0). (8.21)

We introduce the random variable U = [W0, I], where I is independent
of all other random variables (except U) and has distribution PI(a) =
1/n for a = 1,2, . . . ,n. We further define X1 = X1I , X2 = X2I , and Y =
YI so that PUX1X2Y (·) factors as

PU ([a,i])PX1|U (b | [a,i])PX2|U (c | [a,i])PY |X1X2(d |b,c) (8.22)

for all a,b,c,d. We can now write the bound (8.21) as

R1 ≤ I(X1;Y |X2U). (8.23)

We similarly have

R2 ≤ I(X2;Y |X1U) (8.24)
R1 + R2 ≤ I(X1X2;Y |U) (8.25)

R0 + R1 + R2 ≤ I(X1X2;Y ). (8.26)
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The expressions (8.22)–(8.26) specify that every achievable (R0,R1,R2)
must lie in CMAC. Thus, CMAC is the capacity region.

We remark that CMAC must be convex since time-sharing is permit-
ted in the converse, i.e, one can use one code book for some fraction of
the time and another code book for another fraction of the time. One
can check that the union of regions (8.13) is indeed convex (see [67,
Appendix A]).

8.5 The Capacity Region with R0 = 0

The MAC is usually treated with R0 = 0, in which case the capacity
region reduces to

CMAC =
⋃



(R1,R2) :
0 ≤ R1 ≤ I(X1;Y |X2U)
0 ≤ R2 ≤ I(X2;Y |X1U)
R1 + R2 ≤ I(X1X2;Y |U)




 , (8.27)

where the union is over joint distributions that factor as

PUX1X2Y = PU PX1|U PX2|U PY |X1X2 (8.28)

and where |U|≤ min(|Y| + 3, |X1| · |X2| + 2) (one can, in fact, restrict
attention to |U|≤ 2 [19, p. 278]). However, one often encounters the
following equivalent formulation of CMAC:

RMAC = co




⋃



(R1,R2) :
0 ≤ R1 ≤ I(X1;Y |X2)
0 ≤ R2 ≤ I(X2;Y |X1)
R1 + R2 ≤ I(X1X2;Y )








 , (8.29)

where the union is over joint distributions that factor as

PX1X2Y = PX1 PX2 PY |X1X2 (8.30)

and where co(S) is the convex hull of a set S. Proving that RMAC =
CMAC requires some additional work, and we refer to [67, sec. 3.5] for
a discussion on this topic. Some authors prefer (8.29) for historical
reasons, and because (8.29) has no U . Other authors prefer (8.27)
because it requires no convex hull operation. We do point out, how-
ever, that for some channels (other than MACs) a time-sharing random
variable U gives larger regions than the convex hull operator (see [19,
pp. 288–290]).
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Consider two examples. First, consider the AWGN MAC with block
or per-symbol power constraints P1 and P2 for the respective transmit-
ters 1 and 2. The maximum entropy theorem ensures that

CMAC =




(R1,R2) :
0 ≤ R1 ≤ 1

2 log(1 + P1)
0 ≤ R2 ≤ 1

2 log(1 + P2)
R1 + R2 ≤ 1

2 log(1 + P1 + P2)




 . (8.31)

The resulting region is plotted in Figure 8.4. We remark that an alterna-
tive coding method for block power constraints is to use time-division
multiplexing (TDM) or frequency-division multiplexing (FDM). For
example, suppose that transmitters 1 and 2 use the fractions α and
1 − α of the available bandwidth, respectively. The resulting rates are

R1 =
α

2
log
(

1 +
P1

α

)
(8.32)

R2 =
1 − α

2
log
(

1 +
P2

1 − α

)
, (8.33)

where the transmitters boost their powers in their frequency bands.
The resulting rate pairs are plotted in Figure 8.4. In particular, by
choosing α = P1/(P1 + P2) one achieves a boundary point with

R1 + R2 = log(1 + P1 + P2). (8.34)

This shows that TDM and FDM can be effective techniques for the
MAC.

Fig. 8.4 CMAC for the AWGN MAC.
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Second, consider the binary adder channel or BAC with X1 = X2 =
{0,1}, Y = {0,1,2}, and

Y = X1 + X2, (8.35)

where “+” refers to integer addition. The best X1 and X2 are uniformly
distributed and we compute

CMAC =




(R1,R2) :
0 ≤ R1 ≤ 1
0 ≤ R2 ≤ 1
R1 + R2 ≤ 1.5




 . (8.36)

The resulting region has a similar form as that shown in Figure 8.4.

8.6 Decoding Methods

8.6.1 Single-User Decoding and Rate-Splitting

The capacity expression (8.29) is suggestive for code design. Consider,
e.g., the AWGN MAC and the marked corner point in Figure 8.4.
The decoder can proceed in two stages: first, decode w2 by considering
xn

1 (w1) as AWGN with variance P1; second, subtract xn
2 (w2) from yn

and decode w1. The capacities of the second and first channels are the
respective

R1 =
1
2

log(1 + P1)

R2 =
1
2

log
(

1 +
P2

1 + P1

)
. (8.37)

This type of decoding is known as single-user decoding, stripping, onion
peeling, or step-by-step decoding.

One difficulty with (this form of) single-user decoding is that one
can achieve only the corner points of the pentagon in Figure 8.4. The
other points of the face with maximal R1 + R2 must be achieved by
time-sharing between these two corner points. However, there is a sim-
ple trick known as rate-splitting by which one can achieve the other rate
points by single-user decoding [29, 53]. The idea is to split encoder 2
into two encoders operating at the respective rates R21 and R22 with
R2 = R21 + R22. Suppose these encoders transmit with respective pow-
ers P21 and P22, where P2 = P21 + P22, and that the output of the
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second transmitter is the sum of the two encoded signals. The decoder
performs single-user decoding in three stages: first, decode the R21 code;
second, decode the R1 code; third, decode the R22 code. The rates are

R1 =
1
2

log
(

1 +
P1

1 + P22

)

R2 = R21 + R22 =
1
2

log
(

1 +
P21

1 + P1 + P22

)
+

1
2

log(1 + P22) .

(8.38)

Note that by choosing P22 = 0 we recover (8.37), while if we choose
P22 = P2 we obtain the other corner point of the pentagon in Figure 8.4.
By varying P22 from 0 to P2, we thus achieve any rate point on the
boundary of that face of the pentagon with maximum sum-rate.

8.6.2 Joint Decoding

Joint decoding refers to decoding both messages simultaneously. For
the MAC, an “optimal” joint decoder is much more complex than
an “optimal” single-user decoder because one must consider all code-
word pairs. However, by using iterative decoding, joint decoders can be
implemented almost as easily as single-user decoders [4]. Suppose, for

Decoder 2Decoder 1

Fig. 8.5 Graph for an iterative joint decoder for the AWGN MAC.
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example, that both messages are encoded with a low-density parity-
check (LDPC) code. An example of a decoding graph (or factor graph)
for the decoders and the MAC is depicted in Figure 8.5. The itera-
tive decoder is initialized by giving the nodes labeled x1i + x2i a log-
likelihood ratio (LLR) based on the yi, i = 1,2, . . . ,n. The remaining
operation of the decoder is similar to that for a DMC or a point-to-
point AWGN channel.



9
The Relay Channel

9.1 Problem Description

The relay channel is a multi-terminal problem where a source terminal
transmits a message to a sink terminal with the help of one or more
relays. We begin by considering the model of Figure 9.1 that has one
relay. The message W with entropy nR bits is transmitted from the
source terminal (terminal 1), with the help of a relay terminal (terminal
2), to the sink terminal (terminal 3) via a channel PY2Y3|X1X2(·). We
model the transmissions as taking place synchronously, i.e., there is a
central clock that governs the operation of the terminals. The clock
ticks n times, and terminals 1 and 2 apply the respective inputs X1i

and X2i to the channel after clock tick i − 1 and before clock tick i.
The receiving terminals 2 and 3 see their respective channel outputs
Y2i and Y3i at clock tick i. Thus, there is a small delay before reception
that ensures the system operates in a causal fashion. The alphabets of
X1i, X2i, Y2i, and Y3i are X1, X2, Y2, and Y3, respectively.

The synchronism we require is somewhat restrictive, and a more
realistic model might be to view time as being continuous, and to
permit each terminal to transmit a waveform of duration T seconds.

371
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Source SinkTerminal 1 Terminal 3

Terminal 2

Channel

Fig. 9.1 The relay channel.

However, for such scenarios many more issues must be considered care-
fully, such as bandwidth (are the waveforms band-limited?), the chan-
nel (is it linear? time varying?), the receiver processing (what kind of
filters and samplers are used?), and so on. We do not wish to consider
these issues here. We study the simpler model because it will help us
understand how to design codes for more complex problems.

We return to our discrete-time and synchronous model, and add a
few more constraints. We require the input sequence Xn

1 to be a func-
tion of W , the input symbol X2i to be a function of Y i−1

2 , i = 2,3, . . . ,n,
and Ŵ to be a function of Y n

3 . The joint probability distribution of the
random variables thus factors as

P (w,xn
1 ,xn

2 ,yn
2 ,yn

3 , ŵ)

= P (w)P (xn
1 |w)

[
n∏

i=1

P (x2i|yi−1
2 )PY2Y3|X1X2(y2i,y3i|x1i,x2i)

]
P (ŵ|yn

3 ),

(9.1)

where P (xn
1 |w), P (x2i|yi−1

2 ), and P (ŵ|yn
3 ) take on the values 0 and 1

only. Note that in (9.1) we have adopted the convention of dropping
subscripts on probability distributions if the arguments are lower-case
versions of the random variables. This is commonly done in the liter-
ature, but it is often wise to keep the subscripts to avoid confusing
oneself and the readers. The capacity C of the relay channel is the
supremum of rates R for which one can design encoders P (xn

1 |w) and
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Terminal 2

Terminal 1 Terminal 3

Fig. 9.2 A network of DMCs.

P (x2i|yi−1
2 ), and a decoder P (ŵ|yn

3 ), so that Pr
[
W )= Ŵ

]
< ε for any

positive ε.
The above model includes a wide variety of practical problems. For

example, consider the wired network of discrete memoryless channels
(DMCs) shown in Figure 9.2. The channel input of terminal 1 is a vector
X1 = [X11,X12], where the meaning is that X11 is the input of the DMC
from terminal 1 to terminal 2, and X12 is the input of the DMC from
terminal 1 to terminal 3. The input of the DMC from terminal 2 to
terminal 3 is X2. Similarly, the two relay channel outputs are Y2 and
Y3 = [Y31,Y32]. The channel probability distribution thus factors as

P (y2,y31,y32|x11,x12,x2) = P (y2|x11)P (y31|x2)P (y32|x12). (9.2)

Suppose that X11, X12, and X2 are binary, and that Y2 = X11, Y31 =
X2, and Y32 = X12. The capacity is known to be 2 bits per clock tick,
as follows from Ford and Fulkerson’s Max-flow, Min-cut Theorem [24]
(the book [2] gives a good introduction to network flow problems). The
achievability of 2 bits per clock tick is obvious, and the converse follows
by observing that terminal 1 can send (and terminal 3 receive) at most
2 bits per clock tick.

As another example, consider the additive white Gaussian
noise (AWGN) relay channel depicted in Figure 9.3. The channel
PY2Y3|X1X2(·) is defined by

Y2 = X1 + Z2

Y3 = X1 + X2 + Z3, (9.3)

where Z2 and Z3 are Gaussian random variables of variance σ2
2 and σ2

3,
respectively, and are independent of each other and all other random



374 The Relay Channel

Source Terminal 1

Terminal 2

SinkTerminal 3

Channel

Fig. 9.3 The AWGN relay channel.

variables. There are power constraints on the two input sequences Xn
1

and Xn
2 , namely

1
n

n∑

i=1

E
[
X2

ti

]
≤ Pt, t = 1,2. (9.4)

As a third example, for wireless networks the relay can often not
transmit and receive at the same time. In this case, one should add the
following constraints to the model:

Y2 = 0 if X2 )= 0 (9.5)
β ≤ Pr[X2 = 0] ≤ γ (9.6)

for some β and γ with 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1. The constraint (9.6)
puts limits on how often the relay can transmit.

9.2 Decode-and-Forward

The relay channel was studied early on in [63]. The capacity of the
relay channel is still not known in general! We will develop three coding
strategies for this channel, and show that these can sometimes achieve
capacity. The first strategy uses a technique called block-Markov super-
position encoding and is now often called Decode-and-Forward (DF).
The second strategy adds partial decoding, and the third strategy com-
bines block-Markov coding with binning. The second and third strate-
gies are described in the appendix of this section. All three strategies
are due to Cover and El Gamal [16].
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Block 4Block 3Block 2Block 1

Fig. 9.4 Block-Markov superposition encoding for the relay channel assuming the relay
decodes correctly.

Code Construction: Consider a distribution PX1X2(·). Encoding is per-
formed in B + 1 blocks, and for ease of analysis we will generate a
separate code book for each block (see Figure 9.4 where B + 1 = 4).
That is, for block b, b = 1,2, . . . ,B + 1, generate 2nR codewords xn

2b(v),
v = 1,2, . . . ,2nR, by choosing the symbols x2bi(v) independently using
PX2(·). Next, for every xn

2b(v), use superposition coding and generate
2nR codewords xn

1b(v,w), w = 1,2, . . . ,2nR, by choosing the x1bi(v,w)
independently using PX1|X2(·|x2bi(v)).

Source Terminal : The message w of nRB bits is split into B equally-
sized blocks w1,w2, . . . ,wB of nR bits each. In block b, b = 1,2, . . . ,B +
1, the source transmits xn

1b(wb−1,wb), where w0 = wB+1 = 1. This type
of transmission is called block Markov superposition encoding.

Relay Terminal : After the transmission of block b is completed, the
relay has seen yn

2b. The relay tries to find a w̃b such that

(xn
1b(ŵb−1(2), w̃b),xn

2b(ŵb−1(2)),yn
2b) ∈ Tn

ε (PX1X2Y2), (9.7)

where ŵb−1(2) is the relay terminal’s estimate of wb−1. If one or more
such w̃b are found, then the relay chooses one of them, calls this choice
ŵb(2), and transmits xn

2(b+1)(ŵb(2)) in block b + 1. If no such w̃b(2) is
found, the relay sets ŵb(2) = 1 and transmits xn

2(b+1)(1).

Sink Terminal : The sink decodes by using a sliding window decoding
method [11, 72]. After block b, the receiver has seen yn

3(b−1) and yn
3b,

and tries to find a w̃b−1 such that
(xn

1(b−1)(ŵb−2(3), w̃b−1),xn
2(b−1)(ŵb−2(3)),yn

3(b−1)) ∈ Tn
ε (PX1X2Y3)

and
(xn

2b(w̃b−1),yn
3b) ∈ Tn

ε (PX2Y3), (9.8)

where ŵb−2(3) is the sink terminal’s estimate of wb−2. For example,
after block 2 terminal 3 decodes w1 by using yn

31 and yn
32 (see Figure 9.4).
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If one or more such w̃b−1 are found, then the sink chooses one of them,
and puts out this choice as ŵb−1(3). If no such w̃b−1 is found, the sink
puts out ŵb−1(3) = 1.

Analysis: Let E0
2b and E2+

2b be the respective events that the relay finds
no appropriate w̃b and that it finds a w̃b )= wb that satisfies (9.7). Sim-
ilarly, let E0

3b and E2+
3b be the respective events that the sink finds no

appropriate w̃b−1 and that it finds a w̃b−1 )= wb−1 that satisfies (9.8).
We further define Fb−1 to be the event that no errors have been made
up to block b. We can write the overall probability of error as

PB = Pr

[
B⋃

b=1

[E0
2b ∪ E2+

2b ] ∪
B+1⋃

b=2

[E0
3b ∪ E2+

3b ]

]

= Pr
[
E0

21 ∪ E2+
21
]

+
B∑

b=2

Pr
[
[E0

2b ∪ E2+
2b ] ∪ [E0

3b ∪ E2+
3b ] |Fb−1

]

+ Pr[E0
3(B+1) ∪ E2+

3(B+1) |FB ]. (9.9)

The expression (9.9) specifies that we can consider each block sepa-
rately by assuming that no errors were made in the previous blocks.
The overall block error probability PB will then be upper-bounded by
B + 1 times the maximum error probability of any block.

So suppose that no errors were made up to block b. We divide the
error analysis into several parts. Let 0 < ε1 < ε < µX1X2Y2Y3 .

(1) Suppose that (xn
1b(wb−1,wb),xn

2b(wb−1),yn
2b,y

n
3b) /∈ Tn

ε1
(PX1X2Y2Y3) for any b, where ŵb−1(2) = wb−1 and
ŵb−2(3) = wb−2 since Fb−1 has occurred. The probabil-
ity of this event approaches zero with n. Thus, with
probability close to one, both the relay and sink will find
at least one w̃b and w̃b−1 that satisfy (9.7) and (9.8),
respectively.

(2) Suppose the relay finds a w̃b )= wb satisfying (9.7), where
in (9.7) we set ŵb−1(2) = wb−1. The erroneous xn

1b(wb−1, w̃b)
was chosen using PX1|X2(·|x2bi(wb−1)). We can thus use
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Theorem 7.1 to write

Pr
[
E2+

2b

∣∣Fb−1 ∩ Ē0
2b

]
≤
∑

w̃b '=wb

2−n[I(X1;Y2|X2)−2εH(X1|X2)]

< 2n[R−I(X1;Y2|X2)+2εH(X1|X2)], (9.10)

where Ē0
2b is the complement of E0

2b.
(3) Suppose the sink finds a w̃b−1 )= wb−1 satisfying (9.8), where

in (9.8) we set ŵb−2(3) = wb−2. The erroneous xn
1(b−1)(wb−2,

w̃b−1) was chosen using PX1|X2(·|x2(b−1)i(wb−2)). Further-
more, the erroneous xn

2b(w̃b−1) was chosen independent of the
erroneous xn

1(b−1)(wb−2, w̃b−1) and independent of all other
past events. The result is

Pr
[
E2+

3b

∣∣Fb−1 ∩ Ē0
3b

]

≤
∑

w̃b−1 '=wb−1

2−n[I(X1;Y3|X2)−2εH(X1|X2)] · 2−n[I(X2;Y3)−2εH(X2)]

< 2n[R−I(X1X2;Y3)+2εH(X1X2)], (9.11)

where Ē0
3b is the complement of E0

3b.

Combining (9.10) and (9.11), and letting B become large, we can
approach the rate

R = max
PX1X2 (·)

min[I(X1;Y2|X2), I(X1X2;Y3)] . (9.12)

The mutual information I(X1;Y2|X2) in (9.12) represents the infor-
mation transfer on the source-to-relay link, while the mutual informa-
tion I(X1X2;Y3) represents the combined information transfer from the
source and relay to the destination.

We will later show that the following is an upper bound on the relay
channel capacity:

C ≤ max
PX1X2 (·)

min[I(X1;Y2Y3|X2), I(X1X2;Y3)] . (9.13)

Note that an additional Y3 appears in I(X1;Y2Y3|X2) in (9.13) as com-
pared to (9.12).

We remark that (9.12) can be achieved in several ways [38]. For
instance, the book [18, Sec. 14.7 on pp. 428–432] follows the approach
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of [16] by combining block-Markov superposition encoding with par-
titioning or binning (see also [5, 30], where this method is extended
to multiple relays). Yet a third approach is to replace sliding window
decoding with a backward decoding technique described in [67, Sec. 7].

9.2.1 Examples

As a first example, consider the relay channel of Figure 9.2. The rate
(9.12) is only 1 bit per clock tick because we require the relay to decode
the message w. Clearly, the above strategy is not very good for such a
network. Both of the strategies in the appendix of this section remedy
this problem.

Consider next the AWGN relay channel of Figure 9.3. We specialize
the model: consider the geometry of Figure 9.5 for which the channel is

Y2 =
X1

d
+ Z2

Y3 = X1 +
X2

1 − d
+ Z3, (9.14)

where Z2 and Z3 are unit-variance Gaussian random variables. We
choose pX1X2(·) to be zero-mean Gaussian with E

[
X2

1
]

= P1, E
[
X2

2
]

=
P2, and E [X1X2] = ρ

√
P1P2. We compute (9.12) to be

R = max
0≤ρ≤1

min
[
1
2

log
(

1 +
(1 − ρ2)P1

d2

)
,

1
2

log
(

1 + P1 +
P2

(1 − d)2
+ 2ρ

√
P1P2

|1 − d|

)]
. (9.15)

The resulting optimized ρ and rates are plotted in Figure 9.6 as
the curves labeled “strategy 1.” For instance, suppose that d = 1,
in which case the optimum ρ is 0 and the best achievable rate is
log2(1 + 10)/2 ≈ 1.73 bits per clock tick. This is the same rate that

Fig. 9.5 A single relay on a line.
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Fig. 9.6 Rates for an AWGN relay channel with P1 = P2 = 10.

we can achieve without a relay. However, for d → 0 we have ρ → 1
and R → log2(1 + 40) ≈ 2.68 bits per clock tick. Now the relay boosts
the rate substantially. The curve labeled “strategy 2” gives the rates
of the compress-and-forward strategy described in the appendix of this
section. (The partial-decode-and-forward strategy of the appendix gives
the same rates as “strategy 1” for this problem.) The curve labeled
“upper bound” in Figure 9.6 gives an upper bound on C. We show how
to compute this curve later.

9.3 Physically Degraded Relay Channels

Recall that the capacity region of the broadcast channel is still not
known, but for physically or stochastically degraded broadcast chan-
nels we know that superposition encoding achieves capacity. One might
therefore suspect that the same is true for relay channels. Unfortu-
nately, this is not quite the case.
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Consider the AWGN relay channel of (9.3). A natural definition
for a stochastically degraded relay channel is that σ2

2 ≤ σ2
3, or perhaps

some other relation between P1, P2, σ2
2, and σ2

3. However, as we have
seen in Figure 9.6, the block-Markov superposition encoding scheme
developed above does not achieve capacity except in trivial cases. This
seems discouraging.

Consider, then, the more restrictive physically degraded model

Y2 = X1 + Z2

Y3 = X1 + X2 + Z2 + Z̃3

= X2 + Y2 + Z̃3, (9.16)

where Z̃3 is a Gaussian random variable of variance σ̃2
3 that is indepen-

dent of all other random variables. We now have that X1 − [Y2,X2] −
Y3 forms a Markov chain, and therefore

I(X1;Y2Y3|X2) = I(X1;Y2|X2) + I(X1;Y3|X2Y2)
= I(X1;Y2|X2) (9.17)

for any input distribution PX1X2(·). That is, the capacity lower bound
(9.12) and upper bound (9.13) are identical and block Markov superpo-
sition encoding is optimal. One can obviously extend this result to any
relay channels for which X1 − [Y2,X2] − Y3 forms a Markov chain [16,
Sec. 14.7]. This example shows that, unlike for broadcast channels,
physical degradation is not “equivalent” to stochastic degradation, in
the sense that the capacities can be different.

Consider next a “reversely” physically degraded relay channel,
i.e., we have that X1 − [Y3,X2] − Y2 forms a Markov chain. We now
compute

I(X1;Y2Y3|X2) = I(X1;Y3|X2) ≤ I(X1X2;Y3) (9.18)

for any input distribution PX1X2(·). This implies that the upper bound
(9.13) is

C ≤ max
a∈X2

max
PX1 (·)

I(X1;Y3|X2 = a), (9.19)

where X2 is the alphabet of X2 [16, Thm. 2]. The rate (9.19) is certainly
achievable, so we have equality in (9.19).
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9.4 Appendix: Other Strategies

9.4.1 A Partial Decoding Strategy

One of the limitations of the strategy developed in Section 9.2 is that
the relay decodes all the message bits. To circumvent this problem, we
split W into two parts W ′ and W ′′ with respective rates R′ and R′′,
and demand that the relay decode only W ′. Such a partial decoding
strategy can be designed by introducing an auxiliary random variable
U and creating a separate codebook for W ′. The following strategy
is often called Partial-Decode-and-Forward or Multipath Decode-and-
Forward (see [39, Sec. 4.2.7]).

Code Construction: Consider a distribution PUX1X2(·). Encoding is
again performed in B + 1 blocks (see Figure 9.7 where B + 1 =
4). For block b, generate 2nR′ codewords xn

2b(v), v = 1,2, . . . ,2nR′ ,
by choosing the x2bi(v) independently using PX2(·). Next, for
every xn

2b(v), use superposition coding and generate 2nR′ codewords
un

b (v,w), w = 1,2, . . . ,2nR′ , by choosing the ubi(v,w) independently
using PU |X2(·|x2bi(v)). Finally, for every (xn

2b(v),un
b (v,w)) choose 2nR′′

codewords xn
1b(v,w,t), t = 1,2, . . . ,2nR′′ , by choosing the x1bi(v,w) inde-

pendently using PX1|X2U (·|x2bi(v),ubi(v,w)).

Source Terminal : The message w′ of nR′B bits is split into B equally
sized blocks w1,w2, . . . ,wB of nR′ bits each. Similarly, w′′ of nR′′B
bits is split into B equally sized blocks t1, t2, . . . , tB of nR′′ bits each. In
block b, b = 1,2, . . . ,B + 1, the source transmits xn

1b(wb−1,wb, tb), where
w0 = wB+1 = tB+1 = 1.

Block 2Block 1 Block 4Block 3

Fig. 9.7 A partial decoding strategy for the relay channel assuming the relay decodes
correctly.
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Relay Terminal : After the transmission of block b is completed, the
relay has seen yn

2b. The relay tries to find a w̃b such that

(un
1b(ŵb−1(2), w̃b),xn

2b(ŵb−1(2)),yn
2b) ∈ Tn

ε (PUX2Y2). (9.20)

where ŵb−1(2) is the relay’s estimate of wb−1. If one or more such w̃b

are found, then the relay chooses one of them, calls this choice ŵb(2),
and transmits xn

2(b+1)(ŵb(2)) in block b + 1. If no such w̃b is found, the
relay sets ŵb(2) = 1 and transmits xn

2(b+1)(1).

Sink Terminal : After block b, the receiver has seen yn
3(b−1) and yn

3b, and
tries to find a pair (w̃b−1, t̃b−1) such that

(un
1(b−1)(ŵb−2(3), w̃b−1),xn

1(b−1)(ŵb−2(3), w̃b−1, t̃b−1),

xn
2(b−1)(ŵb−2(3)),yn

3(b−1)) ∈ Tn
ε (PUX1X2Y3)

and (xn
2b(w̃b−1),yn

3b) ∈ Tn
ε (PX2Y3), (9.21)

where ŵb−2(3) is the sink terminal’s estimate of wb−2. If one or more
such pair is found, then the sink chooses one of them, and puts out this
choice as (ŵb−1(3), t̂b−1(3)). If no such pair is found, then the sink puts
out (ŵb−1(3), t̂b−1(3)) = (1,1).

Analysis: We use the same approach as in Section 9.2, and suppose
that no errors were made up to block b. We again divide the error
analysis into several parts, and summarize the results. Let 0 < ε1 < ε <
µUX1X2Y2Y3 .

(1) With probability close to 1, for every b we have

(un
b (wb),xn

1b(wb−1,wb, tb),xn
2b(wb−1),yn

2b,y
n
3b) ∈ Tn

ε1(PX1X2Y2Y3).

(2) The relay decoding step requires

R′ < I(U ;Y2|X2). (9.22)

(3) The sink decoding step requires

R′ < I(UX1;Y3|X2) + I(X2;Y3)
R′′ < I(X1;Y3|X2U)

R′ + R′′ < I(UX1;Y3|X2) + I(X2;Y3). (9.23)



9.4 Appendix: Other Strategies 383

We have R = R′ + R′′. Combining (9.22) and (9.23), for large B we
can approach the rate

R = max
PUX1X2 (·)

min[I(U ;Y2|X2) + I(X1;Y3|X2U), I(X1X2;Y3)] . (9.24)

The rate (9.24) is the same as (9.12) if U = X1.

Example 9.1. Consider the relay channel of Figure 9.2, and recall
that the rate (9.12) is only 1 bit per clock tick because we require
the relay to decode w. Suppose we instead use the partial-decode-and-
forward with U = X11, and where X11, X2, and X12 are statistically
independent coin-flipping random variables. We compute

I(U ;Y2|X2) = H(Y2|X2) = H(X11|X2) = H(X11) = 1
I(X1;Y3|X2U) = H(Y3|X2U) = H(X2X12|X2U) = H(X12) = 1
I(X1X2;Y3) = H(Y3) = H(X11X12) = 2. (9.25)

Thus, we find that R = 2 bits per clock tick are achievable, which is
clearly optimal.

Example 9.2. Suppose the relay channel is semi-deterministic in the
sense that Y2 = f(X1,X2) for some function f(·). We can then choose
U = Y2 without violating the Markov chain U − [X1,X2] − [Y2,Y3] and
find that (9.24) reduces to

R = max
PX1X2 (·)

min[H(Y2|X2) + I(X1;Y3|X2Y2), I(X1X2;Y3)] . (9.26)

But the capacity upper bound (9.13) is

C ≤ max
PX1X2 (·)

min[I(X1;Y2|X2) + I(X1;Y3|X2Y2), I(X1X2;Y3)]

= max
PX1X2 (·)

min[H(Y2|X2) + I(X1;Y3|X2Y2), I(X1X2;Y3)] . (9.27)

Partial-decode-and-forward therefore achieves the capacity of semi-
deterministic relay channels [21] and this capacity is given
by (9.26).
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9.4.2 Compress-and-Forward

We next develop a strategy that uses block Markov encoding, superpo-
sition, and binning (see [16, Thm. 6]). This strategy is now often called
Compress-and-Forward (CF).

Code Construction: Encoding is performed in B + 1 blocks, and we
again generate a separate code book for each block (see Figure 9.8 where
B + 1 = 4). For block b, b = 1,2, . . . ,B + 1, generate 2nR codewords
xn

1b(w), w = 1,2, . . . ,2nR, by choosing the x1bi(w) independently using
PX1(·). Similarly, generate 2nR2 codewords xn

2b(v), v = 1,2, . . . ,2nR2 , by
choosing the x2bi(v) independently using PX2(·). Finally, introduce an
auxiliary random variable Ŷ2 that represents a quantized and com-
pressed version of Y2, and consider a distribution PŶ2|X2

(·). For each
xn

2b(v), generate a “quantization” code book by generating 2n(R2+R′
2)

codewords ŷn
2b(v,t,u), t = 1,2, . . . ,2nR′

2 , u = 1,2, . . . ,2nR2 , by choosing
the ŷ2bi(v,t,u) independently using PŶ2|X2

(·|x2bi(v)).

Source Terminal : The message w of 2nRB bits is split into B equally
sized blocks w1,w2, . . . ,wB of 2nR bits each. In block b, b = 1,2, . . . ,B +
1, the source transmits x1b(wb), where wB+1 = 1.

Relay Terminal : In block b = 1, the relay transmits xn
2 (1). After block

b, the relay has seen yn
2b. The relay tries to find a (t̃b, ũb) such that

(ŷn
2b(vb, t̃b, ũb),xn

2b(vb),yn
2b) ∈ Tn

ε (PŶ2X2Y2
). (9.28)

If one or more such (t̃b, ũb) are found, then the relay chooses one of
them, sets vb+1 = ũb, and transmits x2(b+1)(vb+1). If no such pair is
found, the relay sets vb+1 = 1 and transmits x2(b+1)(1).

Block 4Block 2 Block 3Block 1

Fig. 9.8 A compress-and-forward strategy for the relay channel.
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Sink Terminal : After block b, b = 2,3, . . . ,B + 1, the receiver has seen
the sequence of outputs yn

3(b−1) and yn
3b, and tries to find a ṽb such that

(xn
2b(ṽb),yn

3b) ∈ Tn
ε (PX2Y3). (9.29)

If one or more such ṽb are found, then the sink chooses one of them,
and puts out this choice as v̂b(3). If no such ṽb is found, the sink puts
out v̂b(3) = 1. Next, the sink considers yn

3(b−1) and tries to find a t̃b−1
such that

(ŷn
2(b−1)(v̂b−1(3), t̃b−1, v̂b(3)),xn

2(b−1)(v̂b−1(3)),yn
3(b−1)) ∈ Tn

ε (PŶ2X2Y3
),

(9.30)

where v̂b−1(3) is the sink terminal’s estimate of vb−1. If one or more
such t̃b−1 are found, then the sink chooses one of them, and calls this
choice t̂b−1(3). If no such t̃b−1 is found, the sink sets t̂b−1(3) = 1. Finally,
the sink tries to find a w̃b−1 such that

(xn
1(b−1)(w̃b−1), ŷn

2b(v̂b−1(3), t̂b−1(3), v̂b(3)),xn
2(b−1)(v̂b−1(3)),yn

3(b−1))

∈ Tn
ε (PX1Ŷ2X2Y3

). (9.31)

If one or more such w̃b−1 are found, then the sink chooses one of them,
and calls this choice ŵb−1. If no such w̃b−1 is found, the sink sets
ŵb−1 = 1.

Analysis: The analysis follows familiar steps, and we summarize the
results.

(1) The relay quantization step requires

R2 + R′
2 > I(Ŷ2;Y2|X2). (9.32)

(2) The sink’s three decoding steps require

R2 < I(X2;Y3) (9.33)

R′
2 < I(Ŷ2;Y3|X2) (9.34)

R < I(X1; Ŷ2X2Y3)

= I(X1; Ŷ2Y3|X2). (9.35)
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For the bounds (9.32) and (9.35), we choose R′
2 = I(Ŷ2;Y3|X2) − δ

for appropriate δ, and require that Y3 − [X2,Y2] − Ŷ2 forms a Markov
chain. We thus have, using (9.32),

R2 > I(Ŷ2;Y2|X2) − I(Ŷ2;Y3|X2) + δ

= I(Ŷ2;Y2|X2Y3) + δ. (9.36)

Combining (9.35) and (9.36), we have the achievable rate

R = I(X1; Ŷ2Y3|X2), (9.37)

where the joint distribution of the random variables factors as

PX1(a)PX2(b)PY2Y3|X1X2(c,d|a,b)PŶ2|X2Y2
(f |b,c) (9.38)

for all a,b,c,d,f , and the joint distribution satisfies

I(Ŷ2;Y2|X2Y3) ≤ I(X2;Y3). (9.39)

The rate (9.37) reminds one of a MIMO system with one transmit
antenna and two receive antennas. After all, the destination receives
both Y3 and an approximation Ŷ2 of Y2.

Example 9.3. Consider again the relay channel of Figure 9.2 but now
with the compress-and-forward strategy. We choose Ŷ2 = Y2 = X11, and
choose X11, X12, and X2 to be independent coin-flipping random vari-
ables. We compute

I(X1; Ŷ2Y3|X2) = H(Ŷ2Y3|X2) = H(X11X12X2|X2) = H(X11X12) = 2

I(Ŷ2;Y2|X2Y3) = H(Ŷ2|X2Y3) = H(X11|X2X12) = H(X11) = 1
I(X2;Y3) = H(Y3) − H(Y3|X2)

= H(X2X12) − H(X2X12|X2) = 1 (9.40)

and again find that R = 2 bits per clock tick are achievable. Thus,
both the partial-decode-and-forward and compress-and-forward strate-
gies achieve capacity.
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Example 9.4. Consider the AWGN relay channel of Figure 9.3. We
use compress-and-forward with X1 and X2 Gaussian, and Ŷ2 = Y2 +
Ẑ2, where Ẑ2 is a Gaussian random variable with zero-mean, variance
N̂2, and that is independent of all other random variables. The rate
(9.37) is then

R =
1
2

log

(
1 +

P1

d2(1 + N̂2)
+ P1

)
, (9.41)

where the choice

N̂2 =
P1(1/d2 + 1) + 1

P2/(1 − d)2
(9.42)

satisfies (9.39) with equality. The rate (9.41) is plotted in Figure 9.6
as the curve labeled “strategy 2.” Observe from (9.41) and (9.42) that
compress-and-forward achieves capacity as P2 → ∞ or d → 1.



10
The Multiple Relay Channel

10.1 Problem Description and An Achievable Rate

We extend the relay channel of Figure 9.1 to include two or more relays,
and we generalize the multi-hopping strategy of Section 9.2. Consider
the two-relay model of Figure 10.1, and recall that the basic idea of the
strategy of Section 9.2 is to “hop” the message blocks w1,w2, . . . ,wB

successively to the relay, and then to the source. One can generalize
this approach in a natural way as shown in Figure 10.2. This technique
appeared in [38, 72, 73], and it generalizes the strategy of [11].

Code Construction: Consider a joint distribution PX1X2X3(·) and gen-
erate codewords xn

3b(w1), xn
2b(w1,w2), and xn

1b(w1,w2,w3) using PX3(·),
PX2|X3(·|x3bi(w1)), and PX1|X2X3(·|x2bi(w1,w2),x3bi(w1)), respectively,
for b = 1,2, . . . ,B + 2, wt = 1,2, . . . ,2nR for t = 1,2,3, and i = 1,2, . . . ,n.

Note that transmission is performed in B + 2 blocks. The xn
3b(w1)

can be viewed as cloud centers, the xn
2b(w1,w2) as satellites, and the

xn
1b(w1,w2,w3) as satellites of the satellites.

Terminal 1 : The message w of nRB bits is divided into B equally sized
blocks w1,w2, . . . ,wB of nR bits each. In block b, b = 1,2, . . . ,B + 2,

388
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Source SinkTerminal 1 Terminal 4

Terminal 2

Terminal 3

Channel

Delay

Delay

Fig. 10.1 The relay channel with two relays.

Block 1 Block 2

Block 5 Block 6 Block 7 Block 8

Block 4Block 3

Fig. 10.2 Block-Markov superposition encoding for the multiple relay channel assuming the
relays decode correctly.

the source terminal transmits x1b(wb−2,wb−1,wb), where w−1 = w0 =
wB+1 = wB+2 = 1.

Terminal 2 : After the transmission of block b is completed, relay ter-
minal 2 uses yn

2b and its past estimates ŵb−2(2) and ŵb−1(2), and tries
to find a w̃b such that

(xn
1b(ŵb−2(2), ŵb−1(2), w̃b), x̂n

2b, x̂
n
3b,y

n
2b) ∈ Tn

ε (PX1X2X3Y2), (10.1)

where x̂n
2b and x̂n

3b are the codewords corresponding to ŵb−2(2) and
ŵb−1(2). If one or more such w̃b are found, then the relay chooses one
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of them, calls this choice ŵb(2), and transmits x2(b+1)(ŵb−1(2), ŵb(2))
in block b + 1. If no such w̃2b is found, the relay sets ŵb(2) = 1 and
transmits xn

2(b+1)(ŵb−1(2),1).

Terminal 3 : After block b, relay terminal 3 uses yn
3(b−1), yn

3b, and its
past estimates ŵb−3(3), ŵb−2(3), and tries to find a w̃b−1 such that

(xn
1(b−1)(ŵb−3(3), ŵb−2(3), w̃b−1), x̂n

2(b−1), x̂
n
3(b−1),y

n
3(b−1))

∈ Tn
ε (PX1X2X3Y3)

and
(xn

2b(ŵb−3(3), w̃b−1), x̂n
3b,y

n
3b) ∈ Tn

ε (PX2X3Y3), (10.2)

where x̂n
2(b−1), x̂n

3(b−1), and x̂n
3b are the codewords corresponding to

ŵb−3(3) and ŵb−2(3). If one or more such w̃b−1 are found, then the
relay chooses one of them, calls this choice ŵb−1(3), and transmits
xn

3(b+1)(ŵb−1(3)) in block b + 1. If no such w̃b−1 is found, the relay
sets ŵb−1(3) = 1 and transmits xn

3(b+1)(1).

Terminal 4 : After block b, terminal 4 uses yn
3(b−2), yn

3(b−1), yn
3b, and

ŵb−4(4), ŵb−3(4), and tries to find a w̃b−2 such that

(xn
1(b−2)(ŵb−4(4), ŵb−3(4), w̃b−2), x̂n

2(b−2), x̂
n
3(b−2),y

n
4(b−2))

∈ Tn
ε (PX1X2X3Y4)

and
(xn

2(b−1)(ŵb−3(4), w̃b−2), x̂n
3(b−1),y

n
4(b−1)) ∈ Tn

ε (PX2X3Y4)

and
(xn

3b(w̃b−2),yn
4b) ∈ Tn

ε (PX3Y4). (10.3)

If one or more such w̃b−2 are found, then the sink chooses one of them,
and puts out this choice as ŵb−2(4). If no such w̃b−2 is found, the sink
puts out ŵb−2(4) = 1.

Analysis: The analysis is similar to that in Section 9.2. Summarizing
the result, we find that terminals 2, 3, and 4 can decode reliably if the
following respective conditions hold:

R < I(X1;Y2|X2X3) (10.4)
R < I(X1;Y3|X2X3) + I(X2;Y3|X3) (10.5)
R < I(X1;Y4|X2X3) + I(X2;Y4|X3) + I(X3;Y4). (10.6)
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Combining (10.4)–(10.6), and letting B become large, we can approach
the rate

R = max
PX1X2X3 (·)

min[I(X1;Y2|X2X3), I(X1X2;Y3|X3), I(X1X2X3;Y4)] .

(10.7)

We remark that one can exchange the roles of terminals 2 and 3 and
achieve a rate that might be larger than (10.7). One can further gen-
eralize the above approach to more than two relays in a natural way.
That is, we will have one bound per hop or one bound per decoder.
Moreover, there is a delay of one block per hop before the message wb

is decoded at the destination.

10.2 Cut-set Bounds

We wish to develop a capacity upper bound for relay channels. However,
this bound is just as easy to develop for networks with multiple sources
and sinks, so we take a more general approach (see also [18, Sec. 14.10]).

Consider the Discrete Memoryless Network (DMN) depicted in
Figure 10.3. There are three messages, each destined for one or more
sinks, and four terminals. We see that this network has multiple access-
ing (terminals 1 and 2 to terminal 3), broadcasting (terminal 2 to ter-
minals 1 and 3), and relaying (terminal 1 to terminal 4 with the help

Terminal 1 Terminal 3

Terminal 4
Terminal 2

DMN
Channel

Fig. 10.3 A DMN with four terminals.
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of terminal 2). More generally, a DMN has T terminals and a channel
defined by a conditional probability distribution

PY T |XT

(
bT |aT

)
, (10.8)

where XT = X1,X2, . . . ,XT , Y T = Y1,Y2, . . . ,YT , and Xt and Yt are the
respective inputs and outputs of terminal t. The other elements and
rules of a DMN are similar to those already described in Section 9.1
for the relay channel, and we list them below.

• The network is synchronous in the sense that a universal clock
governs the transmissions of the Xti and Yti. The clock ticks
n times and terminal t can transmit Xti after clock tick i − 1
and before clock tick i for i = 1,2, . . . ,n. Terminal t receives
Yti at clock tick i.

• There are M statistically independent messages Wm, m =
1,2, . . . ,M . Message Wm has entropy nRm bits so the rate
of Wm is Rm bits per clock tick. Each message originates
at exactly one vertex, but this message can be destined for
any of the other T − 1 vertices. Thus, each vertex has up to
2T−1 − 1 messages, one for each of the 2T−1 − 1 non-empty
subsets of the other T − 1 vertices.

• Let M(t) be the set of indexes of the messages originating
at terminal t and define WS = {Wm : m ∈ S}. The input Xti

is a function of WM(t) and the channel outputs Y i−1
t .

• The channel outputs Yti are noisy functions of the channel
inputs Xti, i.e., we have

Yti = ft(X1i,X2i, . . . ,XT i,Zi) (10.9)

for some functions ft(·), t = 1,2, . . . ,T , and for some noise
random variable Zi that is statistically independent of all
other noise and message random variables.

• Let Dm be the set of terminals that decode Wm, and let
Ŵm(t) be the estimate of Wm at node t, t ∈ Dm. The
capacity region C is the closure of the set of rate-tuples
(R1,R2, . . . ,RM ) for which, for sufficiently large n, there are
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encoders and decoders so that the error probability

Pr

[
M⋃

m=1

⋃

t∈Dm

{
Ŵm(t) )= Wm

}]
(10.10)

can be made as close to 0 as desired (but not necessarily
exactly 0).

We return to our bound and partition the set of terminals T =
{1,2, . . . ,T} into two sets S and S̄. We call the pair (S, S̄) a cut. We
remark that the terminology “cut” usually refers to a set of edges of a
network graph [24] and one can unify this approach with what follows
(see [39, Sec. 3.7.1]).

We say that the cut (S, S̄) separates a message Wm and its estimate
Ŵm(t) if Wm originates at a terminal in S and t ∈ S̄. Let M(S) be the
set of messages separated from one of their estimates by the cut (S, S̄),
and let RM(S) be the sum of the rates of these messages. We further
define Xn

S = {Xn
t : t ∈ S}, and similarly for Y n

S , XS , and YS . The rates
for reliable communication are bounded by

nRM(S)
(a)
≤ I(WM(S);Y n

S̄ WM(S̄))

= I(WM(S);Y n
S̄ |WM(S̄))

=
n∑

i=1

H(YS̄i|Y i−1
S̄ WM(S̄)) − H(YS̄i|Y i−1

S̄ WM(T ))

=
n∑

i=1

H(YS̄i|Y i−1
S̄ WM(S̄)X

i
S̄) − H(YS̄i|Y i−1

S̄ WM(T )X
i
S̄)

≤
n∑

i=1

H(YS̄i|XS̄i) − H(YS̄i|XS̄iXSi)

=
n∑

i=1

I(XSi;YS̄i|XS̄i)

(b)
= n · I(XSI ;YS̄I |XS̄II) (10.11)
(c)
≤ n · I(XSI ;YS̄I |XS̄I), (10.12)
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where (a) follows by Fano’s inequality, (b) by choosing I to be uni-
formly distributed over {1,2, . . . ,n}, and (c) because conditioning can-
not increase entropy, and because

PIXT
I Y T

I
(i,aT , bT ) = PI(i) PXT

I |I(a
T |i) PY T |XT (bT |aT ) (10.13)

for all i, aT and bT . Note that in (10.13) we have used the channel
distribution (10.8).

Let R(PXT
I
,S) be the set of non-negative rate-tuples

(R1,R2 . . . ,RM ) that are permitted by (10.12). We note the fol-
lowing important fact: the distribution (10.13) is the same for all S.
We thus find that, for a given PXT , the reliably achievable rate-tuples
must lie in the set

R(PXT ) =
⋂

S⊆T
R(PXT ,S). (10.14)

Thus, the capacity region C must satisfy

C ⊆
⋃

PXT

⋂

S⊆T
R(PXT ,S). (10.15)

We emphasize that (10.15) involves first an intersection of regions and
then a union, and not the other way around. We further remark that the
intersection in (10.15) involves many regions for every PXT (·). However,
we do not need to evaluate all of them: we can choose any subset of
the regions, and we will still have a capacity outer bound given PXT (·).
However, we must optimize (10.15) over all PXT (·). Fortunately, this is
a convex optimization problem, since the mutual informations (10.12)
are concave functions of PXT (·), and the set of PXT (·) is convex.

10.3 Examples

For example, consider the relay channel of Figure 9.1. The bound
(10.15) on the capacity C is

C ≤ max
PX1X2 (·)

min[I(X1;Y2Y3|X2), I(X1X2;Y3)] . (10.16)

For the Gaussian relay channel, the maximization over PX1X2(·)
becomes a maximization over densities pX1X2(·) satisfying E

[
X2

1
]

≤ P1
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and E
[
X2

2
]

≤ P2. A conditional maximum entropy theorem ensures
that pX1X2(·) should be Gaussian. The resulting capacity upper bound
is

R = max
0≤ρ≤1

min
[
1
2

log
(

1 + (1 − ρ2)P1

(
1
d2 + 1

))
,

1
2

log
(

1 + P1 +
P2

(1 − d)2
+ 2ρ

√
P1P2

1 − d

)]
(10.17)

and is plotted in Figure 9.6.
As a second example, consider the two-relay channel of Figure 10.1.

There are four cuts to consider, namely S = {1}, S = {1,2}, S = {1,3},
and S = {1,2,3}. The bound (10.15) on the capacity C is

C ≤ max
P (x1,x2,x3)

min[I(X1;Y2Y3Y4|X2X3), I(X1X2;Y3Y4|X3),

I(X1X3;Y2Y4|X2), I(X1X2X3;Y4)] . (10.18)

As a third example, consider a broadcast channel PY1Y2|X(·). There
are three cuts S = {1}, S = {1,2}, and S = {1,3}, and the cut-set
bound is the union over PX(·) of the regions R(PX) defined by

R1 ≤ I(X;Y1)
R2 ≤ I(X;Y2)

R1 + R2 ≤ I(X;Y1Y2). (10.19)

For deterministic broadcast channels, the cut-set bound thus defines the
capacity region. (As shown in Section 7.4, we can achieve any (R1,R2)
satisfying R1 ≤ H(Y1), R2 ≤ H(Y2), and R1 + R2 ≤ H(Y1Y2) for any
PX(·) for such channels.)

Finally, consider a MAC PY |X1X2(·). The cut-set bound is

R1 ≤ I(X1;Y |X2)
R2 ≤ I(X2;Y |X1)

R1 + R2 ≤ I(X1X2;Y ), (10.20)

where all joint distributions PX1X2(·) are permitted. The resulting outer
bound is not the capacity region of the MAC in general, although it
does give the right mutual information expressions.
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The Multiaccess Channel with Generalized

Feedback

11.1 Problem Description

The multiaccess channel with generalized feedback (MAC-GF) and
with two transmitters (or users) and three sources is depicted in
Figure 11.1. The sources put out statistically independent messages
W0,W1,W2 with nR0,nR1,nR2 bits, respectively. The common mes-
sage W0 is seen by both encoders. The messages W1 and W2 appear only
at the respective encoders 1 and 2. At time i, i = 1,2, . . . ,n, encoder 1
maps (w0,w1) and its past received symbols yi−1

1 = y11,y12, . . . ,y1(i−1)
to the channel input x1i. Encoder 2 similarly maps (w0,w2) and yi−1

2 to
its channel input x2i. The channel PY1Y2Y |X1X2(·) has two inputs and
three outputs. The decoder uses its output sequence yn to compute its
estimate (ŵ0, ŵ1, ŵ2) of (w0,w1,w2), and the problem is to find the set
of rate-tuples (R0,R1,R2) for which one can make

Pe = Pr[(Ŵ0,Ŵ1,Ŵ2) )= (W0,W1,W2)] (11.1)

an arbitrarily small positive number. The closure of the region of achiev-
able (R0,R1,R2) is the MAC-GF capacity region CMAC-GF.

396



11.1 Problem Description 397

Delay

Delay

MACG F
Source 0

Encoder 2Source 2

Encoder 1Source 1

Decoder Sink

Fig. 11.1 The two-transmitter MAC with generalized feedback.

The terminology “generalized feedback” refers to the wide range of
possible situations the model of Figure 11.1 encompasses. We list a few
cases that have been studied in the past.

(1) The MAC without feedback has Y1 and Y2 being constants.
(2) The MAC with output feedback has Y1 = Y2 = Y . This model

might be appropriate if the receiver has a high capacity link
to the transmitters.

(3) The MAC with degraded output feedback has

Y1 = f1(Y,Z12) (11.2)
Y2 = f2(Y,Z12), (11.3)

where Z12 is a noise random variable. This model limits the
capacity of the feedback links.

(4) The MAC-GF with independent noise has

Y1 = f1(X1,X2,Z1) (11.4)
Y2 = f2(X1,X2,Z2) (11.5)
Y = f(X1,X2,Z), (11.6)

where Z1, Z2, and Z are statistically independent noise ran-
dom variables. This model might fit a scenario where two
mobile terminals cooperate to transmit their data to an
access point or base station.

(5) The MAC with conferencing encoders has two noise-free links
between the transmitters, as depicted in Figure 11.2. The link
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Source 0

Encoder 2Source 2

Encoder 1Source 1

SinkDecoder
MAC

Fig. 11.2 The two-transmitter MAC with conferencing encoders.

from transmitter 1 to transmitter 2 has capacity C12, and
from transmitter 2 to transmitter 1 has capacity C21. We can
include this scenario in our MAC-GF model as follows. We
abuse notation and write X1 = [V1,X1] and X2 = [V2,X2],
where V1 and V2 have alphabet sizes log2(C12) and log2(C21),
respectively. We further set Y1 = V2 and Y2 = V1 by defining
the MAC-GF channel distribution to be

PY1Y2 Y |X1X2
(y1,y2,y

∣∣[v1,x1], [v2,x2])

= 1(y1 = v2) · 1(y2 = v1) · PY |X1X2(y|x1,x2). (11.7)

(6) The relay channel is a special type of MAC-GF with R0 =
R2 = 0 and Y1 a constant.

We will derive an achievable rate region for the MAC-GF by using
block-Markov superposition coding. We then specialize this region to
the above cases.

11.2 An Achievable Rate Region

Variations of the MAC-GF were studied in [5, 11, 17, 25, 34, 48, 67].
We use block-Markov superposition coding where one new trick is to
introduce three auxiliary random variables U , V1, V2. This seems rather
complicated, but these random variables have natural interpretations.
The random variable U represents information that is common to both
transmitters, e.g., the message W0. The random variable V1 repre-
sents information that transmitter 1 sends to transmitter 2 to enable
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cooperation. Similarly, V2 represents information that transmitter 2
sends to transmitter 1. One might alternatively interpret the random
variables as representing different paths through the network: a direct
path U to the destination for W0, two paths V1,X1 to the destination
for W1, where V1 represents the path through encoder 2 and X1 the
direct path, and two paths V2,X2 to the destination for W2, where V2 is
the path through encoder 1 and X2 is the direct path. Another impor-
tant trick is to use a backward decoding technique that was invented
by Willems [67].

Code Construction: As for the relay channel, encoding is performed
in B + 1 blocks but we now use the same code books for each block
(see Figure 11.3 where B + 1 = 3). Consider a distribution PUV1V2X1X2

that factors as PUPV1X1|UPV2X2|U . We generate codebooks as depicted
in Figure 11.4.

• Split the rates as R1 = R′
1 + R′′

1 and R2 = R′
2 + R′′

2 , where
all rate values are non-negative.

• Generate 2n(R0+R′
1+R′

2) codewords un(w0, w̃1, w̃2),
w0 = 1,2, . . . ,2nR0 , w̃′

1 = 1,2, . . . ,2nR′
1 , w̃′

2 = 1,2, . . . ,2nR′
2 , by

choosing the ui(w0, w̃′
1, w̃

′
2) independently using PU (·) for

i = 1,2, . . . ,n.
• Let w = (w0, w̃′

1, w̃
′
2) and generate 2nR′

1 codewords vn
1 (w,w′

1),
w′

1 = 1,2, . . . ,2nR′
1 , by choosing the v1i(w,w′

1) independently
using PV1|U (·|ui(w)) for i = 1,2, . . . ,n.

• For each tuple (w,w′
1), generate 2nR′′

1 codewords
xn

1 (w,w′
1,w

′′
1), w′′

1 = 1,2, . . . ,2nR′′
1 , by choosing the

Block 2Block 1 Block 3

Fig. 11.3 Block-Markov superposition encoding for a MAC-GF.
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Cloud Centers

Satellites

Satellites of Satellites

Fig. 11.4 A codebook for the MAC-GF with a common message.

x1i(w,w′
1,w

′′
1) independently using PX1|UV1(·|ui(w),v1i

(w,w′
1)) for i = 1,2, . . . ,n.

The codebooks for transmitter 2 are generated in the same way,
except that there are now 2nR′

2 and 2nR′′
2 codewords in each of the

respective vn
2 (·) and xn

2 (·) codebooks.

Encoders: We use the block-Markov encoding strategy depicted in
Figure 11.3. The message w0 has nR0(B + 1) bits. The message w1
has n(R1B + R′′

1) bits and is split into two parts w′
1 with nR′

1B
bits and w′′

1 with nR′′
1(B + 1) bits, respectively (w1 and w′′

1 have
an extra nR′′

1 bits to make the decoding symmetric across blocks).
The message w2 is similarly divided into w′

2 and w′′
2 . Each of the

five messages w0, w′
1, w′′

1 , w′
2, and w′′

2 is further divided into B sub-
blocks of equal lengths for each message. We use the notation w0b

to refer to sub-block b of message w0, and similarly for the other
messages.

Let wb = (w0b,w′
1(b−1),w

′
2(b−1)) and suppose that transmitter 1 has

somehow obtained w′
2(b−1) before block b. In block b, b = 1,2, . . . ,B + 1,
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encoder 1 transmits

xn
1 (wb,w

′
1b,w

′′
1b),

where w′
10 = w′

1(B+1) = 1. Encoder 2 operates in the same fashion.

Decoders of Users 1 and 2: After the transmission of block b is com-
pleted, user 1 has seen yn

1b. User 1 tries to find a w̃′
2b such that

(un(ŵb),vn
1 (ŵb,w

′
1b),x

n
1 (ŵb,w

′
1b,w

′′
1b),v

n
2 (ŵb,w̃′

2b),yn
1b)

∈ Tn
ε (PUV1X1V2Y1), (11.8)

where ŵb is user 1’s estimate of wb that contains an estimate of w′
2(b−1).

If one or more such w̃′
2b are found, then user 1 chooses one of them,

calls this choice ŵ′
2b. If no such w̃′

2b is found, then user 1 sets ŵ′
2b = 1.

User 2 operates in the same way.

Decoder: The decoder waits until the last block of transmission is com-
pleted. Given yn

B+1, it tries to find a tuple (w̃B+1, w̃′′
1(B+1), w̃

′′
2(B+1))

such that

(un(w̃B+1),vn
1 (w̃B+1,1),xn

1 (w̃B+1,1, w̃′′
1(B+1)),

vn
2 (w̃B+1,1),xn

2 (w̃B+1,1, w̃′′
2(B+1)),y

n
B+1) ∈ Tn

ε (PUV1X1V2X2Y ).
(11.9)

If one or more such tuple is found, choose one and call it
(ŵB+1, ŵ′′

1(B+1), ŵ
′′
2(B+1)) (note that ŵB+1 = [ŵ0(B+1), ŵ

′
1B, ŵ′

2B]). If no
such triple is found, set (ŵB+1, ŵ′′

1(B+1), ŵ
′′
2(B+1)) = (1,1,1).

Suppose the decoding for transmission block B + 1 is correct. The
decoder next considers yn

B and performs the same decoding step as
above except that the first two “1”s in the arguments of (11.9) are
replaced by ŵ′

1B, and the second two “1”s by ŵ′
2B. The decoder con-

tinues in this fashion until it reaches the first block. It should now be
clear why this is called backward decoding.

Analysis: Consider block 1 and let 0 < ε1 < ε < µUV1X2V2X2Y1Y2Y . We
know that, with probability close to one, we will have

(un(w1),vn
1 (w1,w

′
11),x

n
1 (w1,w

′
11,w

′′
11),

vn
2 (w1,w

′
21),x

n
2 (w2,w

′
21,w

′′
22),y

n
11,y

n
21,y

n
1 ) ∈ Tn

ε1(PUV1X1V2X2Y1Y2Y ).
(11.10)
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Consider user 1 and suppose that there was a w̃′
21 )= w′

21 such that

(un(w1),vn
1 (w1,w

′
11),x

n
1 (w1,w

′
11,w

′′
11),v

n
2 (w1,w̃′

21),yn
11)

∈ Tn
ε (PUV1X1V2Y1). (11.11)

We upper bound the probability of the event (11.11) by
∑

w̃′
21 '=w′

21

2−n[I(V2;Y1|UV1X1)−2εH(V2|UV1X1)]

< 2n[R′
1−I(V2;Y1|UV1X1)+2εH(V2|UV1X1)]. (11.12)

A similar bound can be derived for user 2.
Consider next the decoder and block B + 1. We split the “overall”

error event into 31 disjoint events that correspond to the 31 different
ways in which one or more of the five messages is decoded incorrectly.
For example, consider the event that there was a w̃′′

0(B+1) )= w′′
0(B+1)

such that

(un(w̃B+1),vn
1 (w̃B+1,1),xn

1 (w̃B+1,1,w′′
1(B+1)),

vn
2 (w̃B+1,1),xn

2 (w̃B+1,1,w′′
2(B+1)),y

n
B+1) ∈ Tn

ε (PUV1X1V2X2Y ).
(11.13)

Note that in this case all five codewords in (11.13) were chosen indepen-
dent of the actually transmitted codewords. We can thus upper bound
the probability of the event (11.13) by

∑

w̃0 '=w0

2−n[I(X1X2;Y )−2εH(UV1X1V2X2)]

< 2n[R0−I(X1X2;Y )+2εH(UV1X1V2X2)], (11.14)

where we have taken advantage of the fact that

[U,V1,V2] − [X1,X2] − Y

forms a Markov chain. Fortunately, this rate bound is redundant, and
so are many of the other bounds on the 31 possible error events. We
leave the details of the analysis to the reader, and simply state the
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decoder’s four resulting rate bounds for reliable communication:

R′′
1 ≤ I(X1;Y |UV1V2X2) (11.15)

R′′
2 ≤ I(X2;Y |UV1V2X1) (11.16)

R′′
1 + R′′

2 ≤ I(X1X2;Y |UV1V2) (11.17)
R0 + R1 + R2 ≤ I(X1X2;Y ). (11.18)

In fact, 28 of the 31 rate bounds are dominated by (11.18). Finally, we
combine the bounds (11.15)–(11.18) with the bound (11.12), and with
the counterpart of (11.12) for user 2. The result is that the non-negative
triples (R0,R1,R2) satisfying the following four bounds are achievable:

R1 ≤ I(X1;Y |UV1X2) + I(V1;Y2|UX2) (11.19)
R2 ≤ I(X2;Y |UV2X1) + I(V2;Y1|UX1) (11.20)
R1 + R2 ≤ I(X1X2;Y |UV1V2)

+I(V1;Y2|UX2) + I(V2;Y1|UX1) (11.21)
R0 + R1 + R2 ≤ I(X1X2;Y ), (11.22)

where [V1,X1] − U − [V2,X2] forms a Markov chain. It is rather
remarkable that our region requires only four rate bounds despite hav-
ing used a complicated encoding and decoding procedure. Note that,
by Markovity, we have been able to remove either V1 or V2 from most
of the mutual information expressions in (11.19)–(11.21). The above
bounds describe a region R(PU ,PV1X1|U ,PV2X2|U ) with seven faces,
four of which arise from (11.19)–(11.22), and three of which are non-
negativity constraints on the rates (see Figure 11.5). We can further
achieve rates in the union of such regions, i.e., we can achieve rates in

R =
⋃

PU ,PV1X1|U ,PV2X2|U

R(PU ,PV1X1|U ,PV2X2|U ). (11.23)

The methods of [67, Appendix A] can be used to show that this region
is convex.

11.3 Special Cases

11.3.1 MAC Without Feedback

The MAC without feedback has Y1 and Y2 being constants and the
reader can check that we may as well set V1 = V2 = 0 in (11.19)–(11.22).
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Fig. 11.5 The form of R(PU ,PV1X1|U ,PV2X2|U ).

The resulting region turns out to be the capacity region derived in
Section 8.3.

11.3.2 MAC with Output Feedback

Consider a MAC with output feedback, i.e., we have Y1 = Y2 = Y .
Unlike the point-to-point transmission problem (see Section 3.9), now
feedback can sometimes enlarge the capacity region. The bounds
(11.19), (11.20), and (11.22) have no V1 and V2, and one can further
check that the bound (11.21) is made redundant by choosing V1 = X1
and V2 = X2. This choice is therefore best. The region (11.19)–(11.22)
is thus

R1 ≤ I(X1;Y |UX2) (11.24)
R2 ≤ I(X2;Y |UX1) (11.25)

R0 + R1 + R2 ≤ I(X1X2;Y ), (11.26)

where X1 − U − X2 forms a Markov chain. The capacity region of the
MAC with output feedback is still not known in general. Furthermore,
for the AWGN channel

Y = X1 + X2 + Z (11.27)

one can show that the region defined by (11.24)–(11.26) is strictly inside
the capacity region. In fact, the capacity region for the AWGN channel
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with R0 = 0 turns out to be given by (11.24)–(11.26) but without the
requirement that X1 − U − X2 forms a Markov chain. That is, the
capacity region is the set of rate pairs (R1,R2) satisfying

R1 ≤ I(X1;Y |X2) =
1
2

log
(
1 + P1(1 − ρ2)

)
(11.28)

R2 ≤ I(X2;Y |X1) =
1
2

log
(
1 + P2(1 − ρ2)

)
(11.29)

R1 + R2 ≤ I(X1X2;Y ) =
1
2

log
(
1 + P1 + P2 + 2

√
P1P2 ρ

)
, (11.30)

where ρ = E[X1X2]/
√

P1P2 takes on any value in 0 ≤ ρ ≤ 1. Observe
that for ρ = 0 the sum of (11.28) and (11.29) is larger than (11.30).
Moreover, as we increase ρ from 0 to 1, there is a unique ρ∗ for which
the sum of (11.28) and (11.29) is the same as (11.30). We next describe
how to achieve this boundary point of the capacity region.

11.3.3 Ozarow’s Strategy

We develop a simple encoding strategy for the AWGN MAC with out-
put feedback. Suppose we map W1 with B1 uniformly distributed bits
to a point θ1 in the interval (−1/2,1/2) by placing a (binary) deci-
mal point in front of the bit string W1 and interpreting the result as a
(binary) fraction minus (1/2 − 1/2B1+1). This means that θ1 has zero
mean. For instance, if W1 = 0,1,0,0,1 then we map W1 to the point
(1/4 + 1/32) − (1/2 − 1/64). We similarly map W2 to a point θ2 in
(−1/2,1/2).

Consider the first channel use. Users 1 and 2 transmit the respective

X11 =

√
P1

σ2
10

θ1 (11.31)

X21 =

√
P2

σ2
20

θ2, (11.32)

where σ2
10 = E[θ2

1] and σ2
20 = E[θ2

2] are both 1/12. We have E[X2
11] = P1

and E[X2
21] = P2 by construction.
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Consider now the receiver that computes linear minimum-mean
square error (LMMSE) estimates of θ1 and θ2 given Y1:

θ̂11 =
E[θ1Y1]
E[Y 2

1 ]
Y1 (11.33)

θ̂21 =
E[θ2Y2]
E[Y 2

1 ]
Y1. (11.34)

Note that θ̂11 and θ̂21 are identical. The transmitters can also generate
this estimate because they have output feedback. Let the errors in the
estimates after symbol i be

ε1i = θ1 − θ̂1i (11.35)

ε2i = θ2 − θ̂2i. (11.36)

In subsequent steps, the users correct the receiver’s estimates by
sending

X1i =

√
P1

σ2
1(i−1)

ε1(i−1) (11.37)

X2i =

√
P2

σ2
2(i−1)

ε2(i−1), ·m2i (11.38)

where σ2
1i = E[ε21i], σ2

2i = E[ε22i], and m2i is a modulation coefficient
taken to be either +1 or −1. Again, we have E[X2

1i] = P1 and E[X2
2i] =

P2 by construction. The receiver computes the LMMSE estimate ε̂k(i−1)
of εk(i−1) given Yi and forms

θ̂1i = θ̂1(i−1) + ε̂1(i−1) = θ̂1(i−1) +
E[ε1(i−1)Yi]

E[Y 2
i ]

Yi (11.39)

θ̂2i = θ̂2(i−1) + ε̂2(i−1) = θ̂2(i−1) +
E[ε2(i−1)Yi]

E[Y 2
i ]

Yi. (11.40)

We outline an analysis of the convergence of the error variances σ2
ki

when one chooses the modulation coefficients. Consider first

σ2
1i = E[ε21i]

= E[(ε1(i−1) − ε̂1(i−1))2]
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= E[ε21(i−1)] − E[ε̂21(i−1)]

= E[ε21(i−1)] −
E[ε1(i−1)Yi]2

E[Y 2
i ]

= E[ε21(i−1)] ·
[
1 −

E[ε1(i−1)Yi]2

E[Y 2
i ]E[ε21(i−1)]

]

= σ2
1(i−1) ·

[
1 − E[X1iYi]2

E[Y 2
i ]P1

]
, (11.41)

where the third step follows by the orthogonality principle. We remark
that

R1i = log
(
σ2

1(i−1)
/
σ2

1i

)
(11.42)

is directly related to the rate of user 1.
Consider next the correlation

E[ε1i ε2i] = E[(ε1(i−1) − ε̂1(i−1)) (ε2(i−1) − ε̂2(i−1))]

= E[ε1(i−1) ε2(i−1)] −
E[ε1(i−1)Yi]E[ε2(i−1)Yi]

E[Y 2
i ]

. (11.43)

We can rewrite this as

E[X1(i+1)X2(i+1)] =

√
σ2

1(i−1)

σ2
1i

·
σ2

2(i−1)

σ2
2i

·
m2(i+1)

m2i

×
[
E[X1iX2i] − E[X1iYi]E[X2iYi]

E[Y 2
i ]

]
. (11.44)

We convert the above to a matrix recursion as follows. Let Ki be the
covariance matrix of [X1i,X2i]T . We then have

E[XkiYi] = (Ki1)k (11.45)

E[Y 2
i ] = 1T Ki1 + 1 (11.46)

Rki = log
(

Pk(1T Ki1+1)
Pk(1T Ki1+1)−(Ki1)k

)
, (11.47)

where 1 = [1,1]T and (V )k is the kth entry of the vector V . Using
m2i = (−1)i−1, we further have

Ki+1 =
[

eR1i/2 0
0 −eR2i/2

][
Ki − (Ki1)(Ki1)T

1T Ki1 + 1

][
eR1i/2 0
0 −eR2i/2

]

(11.48)
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that is a matrix recursion related to a discrete-time algebraic Ric-
cati equation (DARE). One can show that (11.48) has a unique fixed
point K. We take the determinant of both sides of (11.48) and find
that this fixed point satisfies

detK =
eR1eR2

1T K1 + 1
detK, (11.49)

where we have dropped the index i for fixed point values. Taking log-
arithms of both sides, we find that we have

R1 + R2 = log
(
1T K1 + 1

)
, (11.50)

which implies that the fixed point ρ = E[X1X2]/
√

P1P2 described after
(11.30) is the same as ρ∗.

11.3.4 MAC-GF with Independent Noise

Consider a MAC-GF with AWGN and the channel outputs

Y = X1/d1 + X2/d2 + Z (11.51)
Y1 = X2/d21 + Z1 (11.52)
Y2 = X1/d12 + Z2, (11.53)

where the Z, Z1, Z2 are Gaussian, zero mean, unit variance, and inde-
pendent of each other and the X1 and X2. The di and dij represent
distances between the terminals, and they add a geometric compo-
nent to the model. We again impose the constraints E

[
X2

1
]

≤ P1 and
E
[
X2

2
]

≤ P2. Let V1, V2, X1, X2 be jointly Gaussian with

V1 = (
√

P1ρ1)U +
√

P ′
1(1 − ρ2

1)U ′
1 (11.54)

V2 = (
√

P2ρ2)U +
√

P ′
1(1 − ρ2

2)U ′
2 (11.55)

X1 = V1 +
√

P ′′
1 (1 − ρ2

1)U ′′
1 (11.56)

X2 = V2 +
√

P ′′
1 (1 − ρ2

2)U ′′
2 (11.57)
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where U , U ′
1, U ′

2, U ′′
1 , and U ′′

2 are independent, unit variance, Gaussian,
and where P1 = P ′

1 + P ′′
1 , P2 = P ′

2 + P ′′
2 . We compute

I(V1;Y2|UX2) =
1
2

log
(

1 +
P ′

1(1 − ρ2
1)/d2

12
1 + P ′′

1 (1 − ρ2
1)/d2

12

)
(11.58)

I(V2;Y1|UX1) =
1
2

log
(

1 +
P ′

2(1 − ρ2
2)/d2

21
1 + P ′′

2 (1 − ρ2
2)/d2

21

)
(11.59)

I(X1;Y |UV1X2) =
1
2

log
(
1 + P ′′

1 (1 − ρ2
1)/d2

1
)

(11.60)

I(X2;Y |UV2X1) =
1
2

log
(
1 + P ′′

2 (1 − ρ2
2)/d2

2
)

(11.61)

I(X1X2;Y |UV1V2) =
1
2

log
(
1 + P ′′

1 (1 − ρ2
1)/d2

1 + P ′′
2 (1 − ρ2

2)/d2
2
)

(11.62)

I(X1X2;Y ) =
1
2

log
(
1 + P1/d2

1 + P2/d2
2 + 2

√
(P1/d2

1)(P2/d2
2) ρ1ρ2

)
.

(11.63)

The achievable-rate bounds (11.19)–(11.22) are therefore

R1 ≤ 1
2

log
((

1 + P ′′
1 (1 − ρ2

1)/d2
1
)(

1 +
P ′

1(1 − ρ2
1)/d2

12
1 + P ′′

1 (1 − ρ2
1)/d2

12

))

(11.64)

R2 ≤ 1
2

log
((

1 + P ′′
2 (1 − ρ2

2)/d2
2
)(

1 +
P ′

2(1 − ρ2
2)/d2

21
1 + P ′′

2 (1 − ρ2
2)/d2

21

))

(11.65)

R1 + R2 ≤ 1
2

log
((

1 + P ′′
1 (1 − ρ2

1)/d2
1 + P ′′

2 (1 − ρ2
2)/d2

2
)

×
(

1 +
P ′

1(1 − ρ2
1)/d2

12
1 + P ′′

1 (1 − ρ2
1)/d2

12

)(
1 +

P ′
2(1 − ρ2

2)/d2
21

1 + P ′′
2 (1 − ρ2

2)/d2
21

))

(11.66)

R0 + R1 + R2 ≤ 1
2

log
(
1 + P1/d2

1 + P2/d2
2 + 2

√
(P1/d2

1)(P2/d2
2) ρ1ρ2

)
.

(11.67)

For example, suppose that d12 = d21 and d12 ≥ d1 and d12 ≥ d2. One
can check that the achievable mutual informations in (11.64)–(11.66)
are then not larger than their corresponding mutual informations
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(8.17)–(8.19) with P1 and P2 replaced by the respective P1/d2
1 and

P2/d2
2. This means that we may as well set V1 = V2 = 0 and cooperate

only through the U . This makes intuitive sense: if the users are both far-
ther from each other than from the receiver, they need not decode each
other’s data. On the other hand, if d12 ≤ d1 or d12 ≤ d2 then coopera-
tion by “multi-hopping” part of the message can help. This geometric
insight is especially useful when performing resource allocation (power
allocation) when the channels between the users and the receiver are
time-varying.

11.3.5 MAC with Conferencing Encoders

Recall that the MAC with conferencing encoders has two noise-free
links between the transmitters (see Figure 11.1). The link from trans-
mitter 1 to transmitter 2 has capacity C12, and from transmitter 2 to
transmitter 1 has capacity C21. We simply equate the V1 and V2 in
Figure 11.2 with those in (11.19)–(11.22), make V1 and V2 independent
of U , X1, and X2, and arrive at the achievable region

R1 ≤ I(X1;Y |UX2) + C12 (11.68)

R2 ≤ I(X2;Y |UX1) + C21 (11.69)

R1 + R2 ≤ I(X1X2;Y |U) + C12 + C21 (11.70)

R0 + R1 + R2 ≤ I(X1X2;Y ), (11.71)

where X1 − U − X2 forms a Markov chain. Willems [67, Sec. 8] showed
that these expressions give the capacity region after taking the union
described in (11.23).



A
Discrete Probability and Information Theory

A.1 Discrete Probability

We begin with basic definitions. A discrete sample space Ω =
{ω1,ω2, . . . ,ωN} is the set of possible outcomes of a random experiment.
An event is a subset of Ω including the empty set ∅ and the certain
eventΩ . The probability measure Pr[·] assigns each event a number in
the interval [0,1] = {x : 0 ≤ x ≤ 1} such that

Pr[Ω] = 1 (A.1)
Pr[A ∪ B] = Pr[A] + Pr[B] if A ∩ B = ∅. (A.2)

The atomic events are the events {ωi}, i = 1,2, . . . ,N , so we have

Pr[A] =
∑

ωi∈A
Pr[ωi] , (A.3)

where we have written Pr[ωi] as a shorthand for Pr[{ωi}]. The comple-
ment Ac (or Ā) of event A is the set of all ωi that are not in A.

Example A.1. Consider a six-sided die and define Ω= {1,2,3,4,5,6}
(see Figure A.1). A fair die has Pr[ωi] = 1/6 for all i. The probability of

411
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Sample Space

Fig. A.1 A sample space with six atomic events.

the event A is therefore |A|/|Ω|, where |A| be the number of elements
in A.

We say that “event A implies event B,” or A ⇒ B, if and only if
A ⊆ B. By using (A.3), we thus find that A ⇒ B gives Pr[A] ≤ Pr[B].
Equation (A.3) also implies that

Pr[A ∪ B] = Pr[A] + Pr[B] − Pr[A ∩ B] . (A.4)

We thus have

Pr[A ∪ B] ≤ Pr[A] + Pr[B] , (A.5)

which is known as the union bound.
The conditional probability of the event B given the occurrence of

the event A with Pr[A] > 0 is

Pr[B|A] =
Pr[A ∩ B]

Pr [A]
. (A.6)

The events A and B are said to be independent if

Pr [A ∩ B] = Pr[A] · Pr[B] . (A.7)
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Thus, if Pr [A] > 0 then using (A.6) the events A and B are independent
if Pr [B|A] = Pr[B]. On the other hand, from (A.3) we have

Pr[A ∩ B] ≤ Pr[A] (A.8)

so that if Pr [A] = 0 then Pr[A ∩ B] = 0 and (A.7) is satisfied. Thus, if
Pr [A] = 0 then A and B are always independent.

Example A.2. Consider our fair die and the events A = {1,3,5} and
B = {1,2} in Figure A.1. We find that (A.7) is satisfied so A and B are
independent.

A.2 Discrete Random Variables

A discrete random variable X is a mapping from Ω into a discrete and
finite set X and its range is denoted by X(Ω). (More generally, Ωand
X might both be countably infinite.) The probability distribution PX(·)
is a mapping from X(Ω) into the interval [0,1] such that

PX(a) = Pr[ω : X(ω) = a] (A.9)

or simply PX(a) = Pr[X = a]. We thus have

PX(a) ≥ 0 for all a ∈ X (A.10)
∑

a∈X(Ω)

PX(a) = 1. (A.11)

Consider next n random variables Xn = X1,X2, . . . ,Xn with domain
Ω and range Xn(Ω) = X1(Ω) × X2(Ω) × · · · × Xn(Ω). The joint prob-
ability distribution PXn(·) of these random variables is the mapping
from Xn(Ω) into the interval [0,1] such that

PXn(an) = Pr

[
n⋂

i=1

{Xi = ai}
]

. (A.12)

We thus have

PXn(an) ≥ 0 for all an ∈ Xn(Ω) (A.13)
∑

an∈Xn(Ω)

PXn(an) = 1. (A.14)
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We further have

PXn−1(an−1) = PX1,X2,...,Xn−1(a1,a2, . . . ,an−1)

=
∑

an∈Xn(Ω)

PX1,X2,...,Xn−1Xn(a1,a2, . . . ,an−1,an). (A.15)

The random variables X1,X2, . . . ,Xn are statistically independent if

PXn(an) =
n∏

i=1

PXi(ai) for all an ∈ Xn(Ω). (A.16)

Similarly, X1,X2, . . . ,Xn are statistically independent conditioned on
the event A with Pr[A] > 0 if, for all an ∈ Xn(Ω), we have

Pr

[
n⋂

i=1

{Xi = ai}

∣∣∣∣∣A
]

=
n∏

i=1

Pr[Xi = ai|A] . (A.17)

The support of a random variable X is the set

supp(PX) = {a : a ∈ X ,PX(a) > 0}. (A.18)

The conditional probability distribution PY |X(·) is a mapping from
supp(PX) × Y (Ω) into the interval [0,1] such that

PY |X(b|a) =
PXY (a,b)

PX(a)
. (A.19)

Thus, using (A.16) we find that X and Y are statistically independent
if and only if

PY |X(b|a) = PY (b) for all (a,b) ∈ supp(PX) × Y (Ω). (A.20)

Similarly, we say that X and Y are statistically independent condi-
tioned on Z if

PXY |Z(a,b|c) = PX|Z(a|c)PY |Z(b|c), (A.21)

for all (a,b,c) ∈ X(Ω) × Y (Ω) × supp(PZ). Thus, we find that X and
Y are statistically independent conditioned on Z if and only if

PY |XZ(b|a,c) = PY |Z(b|c), (A.22)

for all (a,b,c) ∈ supp(PX) × Y (Ω) × supp(PZ). Alternatively, X and Y
are statistically independent conditioned on Z if and only if

PX|Y Z(a|b,c) = PX|Z(a|c), (A.23)

for all (a,b,c) ∈ X(Ω) × supp(PY Z).
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A.3 Expectation

Consider a real-valued function f(·) with domain X(Ω). The expecta-
tion of the random variable Y = f(X) is

E [Y ] = E [f(X)] =
∑

a∈supp(PX)

PX(a)f(a). (A.24)

One sometimes encounters the notation EX [Y ] if it is unclear which of
the letters in the argument of E [·] are random variables. The conditional
expectation of f(X) given that the event A with Pr[A] > 0 occurred is

E [f(X)|A] =
∑

a:Pr[{X=a}∩A]>0

Pr[X = a|A] f(a), (A.25)

where the conditional probability Pr[X = a|A] is defined as in (A.6).
In particular, if A = {Z = c} and PZ(c) > 0 we have

E [f(X)|Z = c] =
∑

a∈supp(PX|Z(·|c))

PX|Z(a|c)f(a). (A.26)

We can re-write the above definitions in a slightly different way.
Let {B1,B2, . . . ,BM} be a collection of events that partition the sample
space, i.e., we have

M⋃

m=1

Bm = Ωand Bi ∩ Bj = ∅, i )= j. (A.27)

We can then write (A.24) as

E [f(X)] =
∑

i,a:Pr[Bi∩{X=a}]>0

Pr[Bi ∩ {X = a}] f(a)

=
∑

i:Pr[Bi]>0

Pr[Bi]
∑

a:Pr[Bi∩{X=a}]>0

Pr[Bi ∩ {X = a}]
Pr [Bi]

f(a)

=
∑

i:Pr[Bi]>0

Pr[Bi]
∑

a:Pr[Bi∩{X=a}]>0

Pr[X = a|Bi] f(a)

=
∑

i:Pr[Bi]>0

Pr[Bi]E [f(X)|Bi] (A.28)

and (A.25) as

E [f(X)|A] =
∑

i:Pr[Bi∩A]>0

Pr[Bi|A] E [f(X)|Bi ∩ A] . (A.29)



416 Discrete Probability and Information Theory

Example A.3. For a discrete random variable Y we can choose Bb =
{Y = b} and write

E [f(X)] =
∑

b∈supp(PY )

PY (b)E [f(X)|Y = b] (A.30)

E [f(X)|A] =
∑

b:Pr[{Y =b}∩A]>0

Pr[Y = b|A] E [f(X,Y )|{Y = b} ∩ A] .

(A.31)

The identities (A.28)–(A.31) are known as the Theorem on Total
Expectation.

A.4 Entropy

The entropy or uncertainty of the discrete random variable X is (see [26,
44, 19, 18] for more details)

H(X) =
∑

a∈supp(PX)

−PX(a) log2 PX(a). (A.32)

Alternatively, we can write

H(X) = E [− log2 PX(X)] . (A.33)

One sometimes encounters the notation H(PX) rather than H(X) in
order to simplify notation and/or to avoid confusion.

Note that we have chosen to evaluate the logarithm using the base 2,
and we continue to follow this convention for discrete random variables
below. Our entropy units are, therefore, bits. One can extend the def-
inition (A.32) to continuous alphabets and certain continuous random
variables by taking appropriate limits. We will often simply assume that
the results carry over in a natural way to “well-behaved” continuous
random variables (see Appendix B).

Example A.4. Suppose that X = {0,1} and PX(0) = p. The entropy
of X is

H2(p) = −p log2 p − (1 − p) log2(1 − p) (A.34)
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and H2(·) is called the binary entropy function. Note that H2(0) =
H2(1) = 0, H2(0.11) ≈ 1/2, H2(1/2) = 1, and H2(p) is maximized by
p = 1/2. More generally, we have the following important result where
we recall that |X | is the number of values in X .

Theorem A.1.

0 ≤ H(X) ≤ log2 |X | (A.35)

with equality on the left if and only if there is one letter a in X with
PX(a) = 1, and with equality on the right if and only if PX(a) = 1/|X |
for all a ∈ X , i.e., X is uniform over X .

Proof. Consider first the left-hand side of (A.35) and note that for
0 < p ≤ 1 we have −p log2 p ≥ 0 with equality if and only if p = 1. Thus,
we have H(X) ≥ 0 with equality if and only if there is one letter a in
X with PX(a) = 1. Consider next the right-hand side of (A.35) and
observe that we have

0 ≤ H(X) = E
[
log2

1
|X |PX(X)

]
+ log2 |X |. (A.36)

But we have the inequality

log2(x) ≤ x − 1
ln(2)

, (A.37)

where ln(x) is the natural logarithm of x, and where equality holds
for x > 0 if and only if x = 1. Applying (A.37) to (A.36), we find that
equality holds on the right in (A.35) if and only if PX(a) = 1/|X | for
all a ∈ X .

Example A.5. Consider X = {0,1,2} and PX(0) = PX(1) = p/2 and
PX(2) = 1 − p. We have

H(X) = −p

2
log2

p

2
− p

2
log2

p

2
− (1 − p) log2(1 − p)

= p + H2(p) (A.38)

and H(X) = log2(3) if p = 2/3.
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Another interesting property is that H2(p) is concave in p since

d

dp
H2(p) = log2

1 − p

p
(A.39)

d2

dp2 H2(p) =
−1

ln(2)p(1 − p)
. (A.40)

We extend this property to random variables with larger alphabets in
Section A.11.

A.5 Conditional Entropy

Consider a joint distribution PXY (·), where the random variable Y
takes on values in a discrete and finite alphabet Y. The conditional
entropy of X given the event Y = b with probability Pr[Y = b] > 0 is

H(X|Y = b) =
∑

a∈supp(PX|Y (·|b))

−PX|Y (a|b) log2 PX|Y (a|b)

= E
[
− log2 PX|Y (X|Y )

∣∣Y = b
]
. (A.41)

Using the same steps as in the previous section, one can show that

0 ≤ H(X|Y = b) ≤ log2 |X | (A.42)

with equality on the left if and only if PX|Y (a|b) = 1 for some a, and
with equality on the right if and only if PX|Y (a|b) = 1/|X | for all a.

The conditional entropy of X given Y is the average of the values
(A.41), i.e., we define

H(X|Y ) =
∑

b∈supp(PY )

PY (b)H(X|Y = b)

=
∑

(a,b)∈supp(PXY )

−PXY (a,b) log2 PX|Y (a|b)

= E
[
− log2 PX|Y (X|Y )

]
. (A.43)

Again, one can show that

0 ≤ H(X|Y ) ≤ log2 |X | (A.44)

with equality on the left if and only if for every b in supp(PY ) there
is an a such that PX|Y (a|b) = 1, and with equality on the right if and
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only if for every b in supp(PY ) we have PX|Y (a|b) = 1/|X | for all a. We
say that Y essentially determines X if H(X|Y ) = 0.

The above definitions and bounds extend naturally to more than
two random variables. For example, consider the distribution PXY Z(·).
We define the conditional entropy of X given Y and the event Z = c
with Pr[Z = c] > 0 as

H(X|Y,Z = c) =
∑

(a,b)∈supp(PXY |Z(·|c))

−PXY |Z(a,b|c) log2 PX|Y Z(a|b,c)

= E
[
− log2 PX|Y Z(X|Y,Z)

∣∣Z = c
]
. (A.45)

A.6 Joint Entropy

The joint entropy of X and Y is defined by considering the concate-
nation XY of X and Y as a new discrete random variable, i.e., we
have

H(XY ) =
∑

(a,b)∈supp(PXY )

−PXY (a,b) log2 PXY (a,b)

= E [− log2 PXY (X,Y )] . (A.46)

Alternatively, one can represent XY by the vector [X,Y ] and write
H(X,Y ) in place of H(XY ) or H([X,Y ]). Theorem A.1 gives

0 ≤ H(XY ) ≤ log2(|X | · |Y|) (A.47)

with equality on the left if and only if PXY (a,b) = 1 for some (a,b), and
with equality on the right if and only if PXY (a,b) = 1/(|X | |Y|) for all
(a,b). Note that we have written the two variables in H(XY ) without
punctuation and the reader should not confuse XY with “X multiplied
by Y .” Some authors prefer to write H(X,Y ) instead of H(XY ) and
this is a matter of taste. We will follow the convention of not using
punctuation if no confusion arises.

Using Bayes’ rule for expanding joint probability distributions, one
can expand the joint entropy using conditional entropies as

H(XY ) = H(X) + H(Y |X)
= H(Y ) + H(X|Y ). (A.48)
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More generally, we have

H(X1X2 . . .Xn) = H(X1) + H(X2|X1) + · · · + H(Xn|X1X2 · · ·Xn−1)

=
n∑

i=1

H(Xi|Xi−1), (A.49)

where, as before, we have used the notation Xj = X1,X2, . . . ,Xj .
Expansions such as (A.48) and (A.49) are called the chain rule for
entropy.

Finally, we often use the following simple rule for manipulating
conditional and joint entropies. Let f(·) and g(·) be functions whose
domains are the ranges of [X,Y ] and Y , respectively. We have

H(X|Y ) = H(Xf(X,Y )|Y g(Y )). (A.50)

To prove (A.50), observe that the chain rule for entropy gives

H(Xf(X,Y )|Y g(Y ))
= H(Xf(X,Y )g(Y )|Y ) − H(g(Y )|Y )
= H(X|Y ) + H(f(X,Y )g(Y )|XY ) − H(g(Y )|Y ). (A.51)

But the last two entropies in (A.51) are zero because [X,Y ] determines
f(X,Y ) and g(Y ), and Y determines g(Y ).

A.7 Informational Divergence

The informational divergence (or relative entropy or Kullback–Leibler
distance) between two distributions PX(·) and PY (·) whose domains
are the same alphabet X is defined as

D(PX‖PY ) =
∑

a∈supp(PX)

PX(a) log2
PX(a)
PY (a)

= E
[
log2

PX(X)
PY (X)

]
(A.52)

and we define D(PX‖PY ) = ∞ if PY (a) = 0 for some PX(a) > 0. Note
that, in general, we have D(PX‖PY ) )= D(PY ‖PX). Next, we prove the
following fundamental result.
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Theorem A.2.

D(PX‖PY ) ≥ 0 (A.53)

with equality if and only if PX(a) = PY (a) for all a ∈ supp(PX).

Proof. Write D(PX‖PY ) = E [− log2(PY (X)/PX(X))] and apply the
inequality (A.37).

Example A.6. Consider X = {0,1} and PX(0) = PY (0)(1 + ε), where
0 ≤ ε ≤ 1/PY (0) − 1. We compute

D(PX‖PY ) = PY (0)(1 + ε) log2(1 + ε)

+ [1 − PY (0)(1 + ε)] log2

(
1 − PY (0)(1 + ε)

1 − PY (0)

)
(A.54)

and we have D(PX‖PY ) ≥ 0 with equality if and only if ε = 0. We
remark that D(PX‖PY ) in (A.54) is convex in ε.

As in (A.52), given a third discrete random variable Z, we define
the conditional informational divergence between PX|Z(·) and PY |Z(·)
as

D(PX|Z‖PY |Z |PZ) =
∑

b∈supp(PZ)

PZ(b)D
(
PX|Z(·|b)‖PY |Z(·|b)

)

=
∑

(a,b)∈supp(PXZ)

PZ(b)PX|Z(a|b) log2
PX|Z(a|b)
PY |Z(a|b)

= E
[
log2

PX|Z(X|Z)
PY |Z(X|Z)

]
. (A.55)

Similar to (A.54), we have D(PX|Z‖PY |Z |PZ) ≥ 0 with equality if and
only if PX|Z(a|b) = PY |Z(a|b) for all (a,b) ∈ supp(PXZ).

A.8 Mutual Information

The mutual information I(X;Y ) between two random variables X and
Y with respective discrete and finite alphabets X and Y is defined as

I(X;Y ) = H(X) − H(X|Y ). (A.56)
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The name “mutual” describes the symmetry in the arguments of
I(X;Y ), i.e., we have

I(X;Y ) = H(Y ) − H(Y |X). (A.57)

Furthermore, using the chain rule (A.48) and the definition of informa-
tional divergence (A.52) we have

I(X;Y ) = H(X) + H(Y ) − H(XY )
= H(XY ) − H(X|Y ) − H(Y |X)
= D(PXY ‖PXPY )

=
∑

(a,b)∈supp(PXY )

PXY (a,b) log2
PXY (a,b)

PX(a)PY (b)
. (A.58)

The last identity in (A.58) and Theorem A.2 imply the following
inequalities.

Theorem A.3.

I(X;Y ) ≥ 0 (A.59)
H(X|Y ) ≤ H(X) (A.60)
H(XY ) ≤ H(X) + H(Y ), (A.61)

with equality in (A.59)–(A.61) if and only if X and Y are statistically
independent.

The inequality (A.60) means that conditioning cannot increase
entropy, or colloquially that conditioning reduces entropy. Note, how-
ever, that H(X|Y = b) can be larger than H(X).

Example A.7. Suppose X and Y are binary and PXY (0,0) =
PXY (0,1) = 0.11/2, PXY (1,0) = 0.78, and PXY (1,1) = 0. We then have
H(X) = H2(0.11) ≈ 1/2 but H(X|Y = 0) = 1 and H(X|Y = 1) = 0.
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We can expand mutual information in a similar way as joint
entropies, namely

I(X1X2 · · ·Xn;Y ) = I(X1;Y ) + I(X2;Y |X1)
+ · · · + I(Xn;Y |X1X2 · · ·Xn−1)

=
n∑

i=1

I(Xi;Y |Xi−1). (A.62)

The expansions (A.62) is called the chain rule for mutual information.
The conditional mutual information between X and Y given a ran-

dom variable Z is defined as

I(X;Y |Z) = H(X|Z) − H(X|Y Z). (A.63)

From the definition of conditional informational divergence in (A.55),
we can also write

I(X;Y |Z) = D(PXY |Z‖PX|ZPY |Z |PZ)

=
∑

c∈supp(PZ)

PZ(c)I(X;Y |Z = c), (A.64)

where

I(X;Y |Z = z) = H(X|Z = z) − H(X|Y,Z = z). (A.65)

We further have

0 ≤ I(X;Y |Z) ≤ min(H(X|Z),H(Y |Z)) (A.66)

with equality on the left if and only if X and Y are independent given Z.
If equality holds on the left, we say that

X − Z − Y (A.67)

forms a Markov chain. Equality holds on the right in (A.66) if and only
if [Y,Z] essentially determines X, or [X,Z] essentially determines Y ,
or both.

We can expand

I(Xn;Y |Z) =
n∑

i=1

I(Xi;Y |ZXi−1). (A.68)
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Finally, let f(·), g(·), and h(·) be functions whose domains are the
ranges of [X,Z], [Y,Z], and Z, respectively. We have

I(X;Y |Z) = I(Xf(X,Z);Y g(Y,Z)|Zh(Z)). (A.69)

The proof of (A.69) follows easily from (A.63) and (A.50):

I(Xf(X,Z);Y g(Y,Z)|Zh(Z)) = H(Xf(X,Z)|Zh(Z))
− H(Xf(X,Z)|Y Zg(Y,Z)h(Z))

= H(X|Z) − H(X|Y Z)
= I(X;Y |Z). (A.70)

A.9 Establishing Conditional Statistical Independence

The random variables of multi-user problems are often related to each
other in a complicated manner. It turns out that graphs are useful
to ease the understanding of these relationships, and even to prove
conditional statistical independence results.

A useful graphical tool in this respect is known as a functional
dependence graph or FDG. An FDG is a graph where the vertices rep-
resent random variables and the edges represent the functional depen-
dencies between the random variables [36, 37, 40]. For instance, suppose
we have NRV random variables that are defined by SRV independent
(or source) random variables by NRV functions. An FDG G is a directed
graph having NRV + SRV vertices representing the random variables
and in which edges are drawn from one vertex to another if the random
variable of the former vertex is an argument of the function defining
the random variable of the latter vertex.

Example A.8. Figure A.2 depicts the FDG for the first three uses of
a channel with feedback. In this graph the channel input symbol Xi,
i = 1,2,3, is a function of the message W and the past channel outputs
Y i−1. We have drawn the feedback links using dashed lines to emphasize
the role that feedback plays. The output Yi is a function of Xi and a
noise random variable Zi. The graph has NRV = 6 random variables
defined by SRV = 4 independent random variables. The SRV vertices
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Fig. A.2 The FDG for the first three uses of a memoryless channel with feedback.

representing the independent W,Z1,Z2, and Z3 are distinguished by
drawing them with a hollow circle.

It turns out that the precise structure of FDGs lets one establish
the conditional statistical independence of sets of random variables by
using graphical procedures called d-separation and fd-separation (“d”
for dependence and “fd” for functional dependence). By d-separation
we mean the following reformulation of a definition in [49, p. 117] that
is described in [36, 37].

Definition A.1. Let X , Y, and Z be disjoint subsets of the vertices of
an FDG G. Z is said to d-separate X from Y if there is no path between
a vertex in X and a vertex in Y after the following manipulations of
the graph have been performed.

(1) Consider the subgraph GXYZ of G consisting of the vertices
in X , Y, and Z, as well as the edges and vertices encountered
when moving backward one or more edges starting from any
of the vertices in X or Y or Z.

(2) In GXYZ delete all edges coming out of the vertices in Z. Call
the resulting graph GXY|Z .
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(3) Remove the arrows on the remaining edges of GXY|Z to obtain
an undirected graph.

A fundamental result of [49, Sec. 3.3] is that d-separation establishes
conditional independence in FDGs having no directed cycles. That is,
if G is acyclic, Z d-separates X from Y in G, and we collect the ran-
dom variables of the vertices in X , Y, and Z in the respective vectors
X, Y and Z, then I(X;Y |Z) = 0 and X − Z − Y forms a Markov
chain.

Example A.9. Consder Figure A.2 and choose X = {W}, Y = {Y2},
and Z = {X1,X2}. We find that Z d-separates X from Y so that
I(W ;Y2|X1,X2) = 0.

A simple extension of d-separation is known as fd-separation which
uses the fact that the FDG represents functional relations, and not only
Markov relations as in Bayesian networks (see [36, Ch. 2],[40]). For fd-
separation, after the second step above one removes all edges coming
out of vertices that are disconnected from the SRV source vertices in
an undirected sense. We remark that fd-separation applies to an FDG
G with cycles, as long as all subgraphs of G are also FDGs (see [36,
Sec. 2]).

A.10 Inequalities

We state and prove several useful inequalities.

Markov Inequality: Let X be a non-negative real-valued random vari-
able with mean E [X]. For a > 0, we have

Pr[X ≥ a] ≤ E [X]
a

. (A.71)

Proof. We have Pr[X ≥ a] = E [1(X ≥ a)], where 1(·) is the indica-
tor function that takes on the value 1 if its argument is true and
is 0 otherwise. We further note that a1(X ≥ a) ≤ X. We thus have
aPr[X ≥ a] = E [a1(X ≥ a)] ≤ E [X].
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Example A.10. Suppose we set X = |Y − E [Y ] |. Markov’s inequality
then gives Tchebycheff’s inequality

Pr[|Y − E [Y ] | ≥ a] = Pr
[
|Y − E [Y ] |2 ≥ a2]

≤ Var[Y ]
a2 , (A.72)

where Var[Y ] is the variance of Y and a > 0.

Example A.11. Suppose we set X = eνY and a = eνb. Markov’s
inequality then gives the Chernoff bounds

Pr[Y ≥ b] ≤ E
[
eνY
]
e−νb for ν ≥ 0

Pr[Y ≤ b] ≤ E
[
eνY
]
e−νb for ν ≤ 0. (A.73)

Jensen’s Inequality: We say that a real-valued function f(·) with domain
interval I of non zero length on the real line is convex (or convex-∪)
on I if, for every interior point x0 of I, there exists a real number m
(that may depend on x0) such that

f(x) ≥ f(x0) + m(x − x0) for all x ∈ I. (A.74)

The convexity is strict if the inequality (A.74) is strict whenever x )= x0.
One can show that an alternative and equivalent definition is that f(·)
is convex on I if for every x1 and x2 in I we have

f (λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2) for 0 < λ < 1. (A.75)

We say that f(·) is concave (or convex-∩) on I if −f(·) is convex on
I. Observe that we are here considering functions of one variable, but
the above definitions and the following results extend readily to many
variables.

Let X be a real-valued random variable taking values in I and let
f(·) be convex on I. Jensen’s inequality states that

f(E [X]) ≤ E [f(X)] . (A.76)
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To prove (A.76), choose x0 = E [X] in (A.74), choose an m that satisfies
(A.74) for this x0, replace x with the random variable X, and take
expectations of both sides of (A.74). Alternatively, if f(·) is concave on
I, then we have

f(E [X]) ≥ E [f(X)] . (A.77)

Furthermore, if f(·) is strictly convex (or concave), equality holds in
(A.76) (or (A.77)) if and only if X is a constant.

Log-sum Inequality: For any non-negative ai and positive bi, i =
1,2, . . . ,n, we have [19, p. 48], [18, p. 29]

n∑

i=1

ai log
ai

bi
≥
(

n∑

i=1

ai

)
log

(
∑n

i=1 ai)
(
∑n

i=1 bi)
(A.78)

with equality if and only if ai/bi is the same for all i.

Proof. We choose f(x) = x log(x), and one can check that f(·) is strictly
convex for positive x. We further choose X so that X = ai/bi with
probability bi/(

∑
j bj). We thus have

E [f(X)] =
n∑

i=1

bi∑
j bj

· ai

bi
log

ai

bi

f(E [X]) =

(
n∑

i=1

bi∑
j bj

· ai

bi

)
log

(
n∑

i=1

bi∑
j bj

· ai

bi

)

and Jensen’s inequality (A.76) gives the desired result.

Fano’s Inequality: Fano’s inequality gives a useful lower bound on
error probability based on conditional entropy (see [18, p. 280]). Sup-
pose both X and X̂ take on values in the alphabet X , and let
Pe = Pr

[
X̂ )= X

]
. We have

H2(Pe) + Pe log2(|X |− 1) ≥ H(X|X̂). (A.79)

We can interpret (A.79) as follows: Pe is bounded from below by some
positive number if H(X|X̂) is bounded from below by some positive
number.
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Proof. Let E = 1(X̂ )= X), where 1(·) is the indicator function. We use
the chain rule to expand H(EX|X̂) in two ways as

H(EX|X̂) = H(X|X̂) + H(E|X̂X) = H(X|X̂)

H(EX|X̂) = H(E|X̂) + H(X|X̂E)

= H(E|X̂) + Pr[E = 0]H(X|X̂,E = 0)

+ Pr[E = 1]H(X|X̂,E = 1)

= H(E|X̂) + Pr[E = 1]H(X|X̂,E = 1)

≤ H(E|X̂) + Pe log2(|X |− 1)
≤ H(E) + Pe log2(|X |− 1)
= H2(Pe) + Pe log2(|X |− 1),

where the first inequality follows because, given X̂ and E = 1, X takes
on at most |X |− 1 values.

Example A.12. Consider X = {0,1} for which Fano’s inequality is

H2(Pe) ≥ H(X|X̂). (A.80)

One can check that equality holds if X = X̂ + Z, where Z is indepen-
dent of X̂ and “+” denotes addition modulo-2.

Example A.13. Consider X = {0,1,2} and X = X̂ + Z, where Z is
independent of X̂, “+” denotes addition modulo-3, and PZ(i) = pi,
i = 0,1,2. Fano’s inequality is

H2(1 − p0) + (1 − p0) ≥ H(X|X̂), (A.81)

and one can check that equality holds if and only if p1 = p2 (see (A.38)).

A.11 Convexity Properties

Entropy, informational divergence, and mutual information have con-
vexity properties that are useful for proving capacity theorems. We list
and prove some of these below.



430 Discrete Probability and Information Theory

Convexity of Informational Divergence: D(PX‖PY ) is convex (or
convex-∪) in the pair (PX(·),PY (·)).

Proof. We use the log-sum inequality to write

λPX(a) log2
λPX(a)
λPY (a)

+ (1 − λ)QX(a) log2
(1 − λ)QX(a)
(1 − λ)QY (a)

≥ [λPX(a) + (1 − λ)QX(a)] log2
λPX(a) + (1 − λ)QX(a)
λPY (a) + (1 − λ)QY (a)

,

where 0 ≤ λ ≤ 1. Summing both sides over all appropriate a ∈ X , we
obtain the desired

λD(PX‖PY ) + (1 − λ)D(QX‖QY )
≥ D (λPX + (1 − λ)QX‖λPY + (1 − λ)QY ) .

Concavity of Entropy: H(X) is concave (or convex-∩) in PX(·).

Proof. We again use the log-sum inequality to write

λPX(a) log2
λPX(a)

λ
+ (1 − λ)QX(a) log2

(1 − λ)QX(a)
1 − λ

≥ [λPX(a) + (1 − λ)QX(a)] log2(λPX(a) + (1 − λ)QX(a)),

where 0 ≤ λ ≤ 1. Summing both sides over all appropriate a ∈ X , and
multiplying by −1, we obtain the desired

λH(PX) + (1 − λ)H(QX) ≤ H (λPX + (1 − λ)QX) ,

where we have written H(X) as H(PX) to simplify the expression.

Convexity of Mutual Information: I(X;Y ) is concave in PX(·) if PY |X(·)
is fixed, and I(X;Y ) is convex in PY |X(·) if PX(·) is fixed.

Proof. Suppose PY |X(·) is fixed, and consider I(X;Y ) = H(Y ) −
H(Y |X). Note that H(Y ) is concave in PY (·). But PY (·) and H(Y |X)
are linear in PX(·). Thus, I(X;Y ) is concave in PX(·).

Suppose next that PX(·) is fixed, and consider I(X;Y ) =
D(PXPY |X‖PXPY ). Note that PY (·) is linear in PY |X(·), so that
D(PXPY |X‖PXPY ) is convex in PY |X(·).



B
Differential Entropy

B.1 Definitions

The differential entropy of a real-valued and continuous random vari-
able with density pX(·) is defined in a similar manner as the entropy
of a discrete random variable:

h(X) =
∫

supp(pX)
−pX(a) logpX(a) da. (B.1)

Formally, one ofen adds “if this integral exists” but we shall permit
differential entropies to take on the values −∞ or +∞. We can alter-
natively write

h(X) = E [− logpX(X)] . (B.2)

Similarly, the joint differential entropy of real-valued and continuous
random variables X1,X2, . . . ,Xn with joint density pXn(·) is defined as

h(Xn) =
∫

supp(pXn )
−pXn(a) logpXn(a) da. (B.3)

We can alternatively write (B.3) as h(X), where X = [X1,X2, . . . ,Xn].
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Simple exercises show that for a nonzero real number c we have

Translation rule: h(X + c) = h(X)
Scaling rule: h(cX) = h(X) + log |c|. (B.4)

Similarly, for a real-valued column vector c of dimension n and an
invertible n × n matrix C we have

Translation rule: h(X + c) = h(X)
Scaling rule: h(CX) = h(X) + log |detC|, (B.5)

where detC is the determinant of C. We will, however, use the notation
|C| for the determinant of C in the rest of the document.

Next, consider a joint density pXY (·), and consider its conditional
density pY |X(·) = pXY (·)/pX(·). We define

h(Y |X) =
∫

supp(pXY )
−pXY (a,b) logpY |X(b|a) dadb. (B.6)

We thus have h(Y |X) = h(XY ) − h(X). Note that we can define
h(Y |X) similar to (B.6) if the density pY |X(·|a) exists for every a but
X does not have a density. Note further that, by conditioning on X = a
and using the translation rule in (B.4), for any real constant c we obtain

h(Y + cX|X) = h(Y |X). (B.7)

B.2 Uniform Random Variables

An interesting observation is that, in contrast to H(X), the differen-
tial entropy h(X) can be negative. For example, consider the uniform
density with pX(a) = 1/A for a ∈ [0,A), where [0,A) = {x : 0 ≤ x < A}.
We compute

h(X) = log(A) (B.8)

so that h(X) → −∞ as A → 0. We can interpret such limiting densities
as consisting of “Dirac-δ” (generalized) functions, and as representing
discrete random variables. For instance, suppose that pX(a) = pi/A for
some integers i, a ∈ [i, i + A), and 0 ≤ A ≤ 1. As A → 0, this density
represents a discrete random variable X̃ with PX̃(i) = pi. We compute

h(X) =
∑

i

−pi log(pi/A) = log(A) + H(X̃) (B.9)
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so h(X) has increased as compared to (B.8). However, h(X) still
approaches −∞ for small A.

In general, one must exercise caution when dealing with h(X), where
X might be discrete or have discrete components. For example, we have
h(Xf(X)) = h(X) + h(f(X)|X) but h(f(X)|X) = −∞.

B.3 Gaussian Random Variables

Consider the Gaussian density

pX(a) =
1√

2πσ2
e− 1

2σ2 (a−m)2 , (B.10)

where m = E [X] and σ2 = Var[X] is the variance of X. Inserting (B.10)
into (B.1), we compute

h(X) =
1
2

log
(
2πeσ2) . (B.11)

We find that h(X) < 0 if σ2 < 1/(2πe). In fact, we have h(X) → −∞
as σ2 → 0.

More generally, consider a random column vector X of dimension
n, mean mX , and covariance matrix

QX = E
[
(X − mX)(X − mX)T

]
, (B.12)

where the superscript “T” denotes transposition. Suppose X is Gaus-
sian distributed, i.e., the density of X is

pX(a) =
1

(2π)n/2
∣∣QX

∣∣1/2 exp
(

−1
2
(a − m)TQ−1

X (a − m)
)

, (B.13)

where
∣∣QX

∣∣ is the determinant of QX . Inserting (B.13) into (B.1), we
compute

h(X) =
1
2

log
(
(2πe)n

∣∣QX

∣∣) . (B.14)

Note that h(X) is negative for small
∣∣QX

∣∣.
Finally, suppose pX Y (·) is Gaussian, where X has dimension n and

Y has dimension m. We compute

h(Y |X) = h(X Y ) − h(X) =
1
2

log
(
(2πe)m

∣∣QX Y

∣∣/∣∣QX

∣∣) . (B.15)
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B.4 Informational Divergence

The informational divergence for continuous random variables X and
Y is

D(pX‖pY ) =
∫

supp(pX)
pX(a) log

pX(a)
pY (a)

da (B.16)

This definition extends to continuous random vectors X and Y that
have the same dimension in the obvious way. The mutual information
between X and Y is

I(X;Y ) = h(X) − h(X|Y )
= D(pXY ‖pXpY ). (B.17)

We can derive similar relations for the continuous random variable
versions of the other quantities in Appendix A. The bound ln(x) ≤
x − 1 again implies that

D(pX‖pY ) ≥ 0 (B.18)

with equality if and only if pX(a) = pY (a) for all a ∈ supp(pX). This
further means that

I(X;Y ) ≥ 0 (B.19)
h(X|Y ) ≤ h(X) (B.20)
h(XY ) ≤ h(X) + h(Y ) (B.21)

with equality if and only if X and Y are independent.

B.5 Maximum Entropy

B.5.1 Alphabet Constraint

Recall that the uniform distribution maximizes the entropy of discrete
random variables with alphabet X . Similarly, the uniform density max-
imizes the differential entropy of continuous random variables with a
support of finite volume. To prove this, suppose that X is confined to
a set S in Rn. Let |S| be the volume of S and let U be uniform over S.
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We use (B.18) and compute

0 ≤ D(pX‖pU ) =
∫

supp(pX)
pX(a) log

(
pX(a)|S|

)
da

≤ −h(X) + log |S|. (B.22)

We thus find that if X is limited to S then h(X) is maximum and equal
to log |S| if and only if pX(a) = 1/|S| for a ∈ S.

B.5.2 First Moment Constraint

For continuous random variables, one is often interested in moment
constraints rather than volume constraints. For example, suppose that
the alphabet of X is all of Rn and we wish to maximize h(X) under
the first-moment constraint (B.23)

E [X] ≤ m, (B.23)

where the inequality a ≤ b means that ai ≤ bi for all entries ai and bi

of the respective a and b.
Observe that, without further constraints, we can choose X to be

uniform over the interval [−A,0) for large positive A and make h(X)
arbitrarily large. We hence further restrict attention to non-negative
X, i.e., every entry Xi of X must be non-negative.

Let E have independent entries Ei that are exponentially dis-
tributed with mean mi, i.e., we choose

pEi(a) =






1
mi

e−a/mi a ≥ 0

0 a < 0.
(B.24)

We use the same approach as in (B.22) to compute

0 ≤ D(pX‖pE) =
∫

supp(pX)
pX(a) log

pX(a)
pE(a)

da

= −h(X) −
∫

supp(pX)
pX(a) logpE(a) da

= −h(X) +
∑

i

log(emi) (B.25)



436 Differential Entropy

with equality in the first step if X = E. This proves the desired
result, namely that (independent) exponential random variables maxi-
mize (differential) entropy under first moment and non-negativity con-
straints.

B.5.3 Second Moment Constraint

Suppose we wish to maximize h(X) under the second-moment
constraint

|QX | ≤ D, (B.26)

where D is some constant. For example, the constraint (B.26) occurs
if we are restricting attention to X that satisfy

QX 3 Q (B.27)

for some positive semidefinite Q, where A 3 B means that B − A is
positive semi-definite (and hence |A| ≤ |B|; see [31, p. 471]).

Let G be Gaussian with the same covariance matrix QX as X. We
repeat the approach of (B.22) and (B.25) and compute

0 ≤ D(pX‖pG) =
∫

supp(pX)
pX(a) log

pX(a)
pG(a)

da

= −h(X) −
∫

supp(pX)
pX(a) logpG(a) da

= −h(X) +
1
2

log
(
(2πe)n|QX |

)
(B.28)

with equality in the first step if X = G. This proves the desired result,
namely that Gaussian random variables maximize (differential) entropy
under the second moment constraints (B.26) or (B.27).

Finally, we prove a conditional version of the maximum entropy
theorem. Suppose we have densities pX Y (·) and pX̃ Ỹ (·) with respective
conditional densities pY |X(·) and pỸ |X̃(·). We define

D
(
pY |X

∥∥pỸ |X̃
∣∣pX

)
=
∫

supp(pX Y )
pX Y (a,b) log

pY |X(b|a)
pỸ |X̃(b|a)

dadb, (B.29)
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which one can show is non-negative. Suppose that (X̃, Ỹ ) is Gaussian
with the same covariance matrix QX Y as (X,Y ). We compute

D
(
pY |X

∥∥pỸ |X̃
∣∣pX

)

= −h(Y |X) −
∫

supp(pX Y )
pX Y (a,b) logpỸ |X̃(b|a) dadb.

= −h(Y |X) +
1
2

log
(
(2πe)m

∣∣QX Y

∣∣/∣∣QX

∣∣) . (B.30)

This proves that, for fixed QX Y , h(Y |X) is maximized by jointly Gaus-
sian X and Y .

B.6 Entropy Typicality

It turns out that we cannot use letter-typicality for continuous random
variables. For example, consider the Gaussian random variable (B.10)
with m = 0. The trouble with applying a letter-typicality test is that the
probability mass function PX(x) is zero for of any letter x. However, we
can use entropy-typicality if we replace the distribution PX(·) in (1.4)
with the density pX(·). For example, we find that xn is entropy-typical
with respect to the density in (B.10) if

∣∣∣∣∣

(
1
n

n∑

i=1

x2
i

)
− σ2

∣∣∣∣∣ < 2σ2ε. (B.31)

We can interpret (B.31) as follows: the average energy of an entropy-
typical xn is close to σ2.

B.7 Entropy-Power Inequality

The (vector) entropy power inequality states that for independent ran-
dom vectors Y and Z of dimension n, we have

2
2
n h(Y +Z) ≥ 2

2
n h(Y ) + 2

2
n h(Z) (B.32)

with equality if Y and Z are jointly Gaussian with proportional covari-
ance matrices, i.e., QY = cQZ for some scalar c. The original result is
due to Shannon [55, sec. 23] with further results by Stam and Blach-
man [9, 61]. Recent references on this inequality are [32, 33].
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