Improved burst-error correction by joint decoding of interleaved RS codes

Short version, 27 July 2015

Gottfried Ungerboeck

GU / 0 of 31

Preview

D=16 block-interleaved codewords RS(N = 96, K = 80; T = 8) over GF(256), transmitted over **uncoded 16-QAM** channel with **AWGN & burst noise** ($SNR_g = 22 \text{ dB}$, $SNR_b = 0 \text{ dB}$, $P_b=0.05$, $n_b=8$)

n ... # of symbol errors per codeword, t ... # of column errors per subblock of M codewords

Contents

- Block and convolutional interleaving of RS codes
- RS coding/decoding: selected topics
- Joint decoding of multiple RS codewords
- Performance evaluations by simulation
- Deep interleaving and correction of very long error bursts
- Concluding remarks

Block interleaving: e.g. in DOCSIS upstream transmission

Convolutional interleaving: e.g. in early ADSL (G.992.1, 06/1999)

The ADSL Transmit PMS-TC Function generates "FEC Data Frames"

= RS(N,K;T) codewords over GF(256), where $N \le 255$, odd.

Permitted interleaving depths are $D \in \{2, 4, 8 \cdots 64\}$.

Convolutional interleaving: aligning burst errors in columns

For modest interleaving depth D < N, consecutively transmitted RS symbols can be aligned in columns to some extent by shifting received codewords cyclically

N = 15, D = 4; $I_D = 4$; matrix entries = temporal positions t(i, i) of transmitted symbols

,						•		•					,		
j	i = 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
codewords not shifted															
i=-7,s= 0:	-105	-101	-97	-93	-89	-85	-81	-77	-73	-69	-65	-61	-57	-53	-49
i=-6,s= 0:	-90	-86	-82	-78	-74	-70	-66	-62	-58	-54	-50	-46	-42	-38	-34
i=-5,s= 0:	-75	-71	-67	-63	-59	-55	-51	-47	-43	-39	-35	-31	-27	-23	-19
i=-4,s= 0:	-60	-56	-52	-48	-44	-40	-36	-32	-28	-24	-20	-16	-12	-8	-4
i=-3,s= 0:	-45	-41	-37	-33	-29	-25	-21	-17	-13	-9	-5	-1	3	7	11
i=-2,s= 0:	-30	-26	-22	-18	-14	-10	-6	-2	→ <mark>2</mark>	6	10	14	18	22	26
i=-1,s= 0:	-15	-11	-7	-3	\rightarrow	\rightarrow 5	9	13	17	21	- 25	29	33	37	41
i = 0, s = 0:	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56
i = 1, s = 0:	15	19	23	27	31	35	39	43	47	51	55	59	63	67	71
i= 2,s= 0:	30	34	38	42	46	50	54	58	62	66	70	74	78	82	86
i= 3,s= 0:	45	49	53	57	61	65	69	73	77	81	85	89	93	97	101
i= 4,s= 0:	60	64	68	72	76	80	84	88	92	96	100	104	108	112	116

codewords cyclically shifted to align burst errors in columns

i=-7,s= 2:	-53,	<u>^</u> -49′_	-105	-101	-97	<u> </u>	-89	-85	-81	-77	-73	-69	-65	-61	-57
i=-6,s= 6:	-54	-50	-46	-42	-38	-34	-90	-86	-82	-78	-74	-70	-66	-62	-58
i=-5,s=10:	-55	-51	-47	-43	-39	-35	-31	-27	-23	-19	<u> -75</u>	-71	67	-63	-59
i=-4,s=14:	-56	-52	-48	-44	-40	-36	-32	-28	-24	-20	-16	-12	-8	-4	<u> -60</u>
i=-3,s= 3:	⁻ 3	<u>∧</u> _,	11	-45	-41	-37	-33	-29	-25	-21	-17	-13	-9	-5	
i=-2,s= 7:	2	<u>\</u> 6	10	14	18	22	26	-30	-26	-22	-18	-14	-10	-6	-2
i=-1,s=11:	1	5	9	13	17	21	25	29	33	37	41	l_15	-11	7	3
i = 0, s = 0:	0		8	12	16	20	24	28	32	36	40	44	48	52	56
i= 1,s= 4:	59	<u> </u>	67	71	715	19	23	27	31	35	39	43	47	51	55
i= 2,s= 8:	58	62	66	70	74	78	82	86	7 30	34	38	42	46	50	54
i= 3,s=12:	57	61	65	69	73	77	81	85	<u> </u>	93	97	101	45	49	53
i= 4,s= 1:	116	60	64	68	72	76	80	84	88	92	96	100	104	108	112

RS coding / decoding: selected topics

- Galois field and Fourier transform
- Information encoding into RS(N,K) codewords
- Syndrome-based decoding*
 - Calculation of syndrome values
 - Determining an error locator polynomial (Berlekamp-Massey or Euclidean algorithm)
 - Determining error locations (Chien search)
 - Determining error values (Forney or Horiguchi algorithm)
- Probabilities of decoding results

* syndromes are not required for interpolation-based decoding

Assume t symbol errors $e_{i_1}, e_{i_2}, \dots e_{i_t}$ have occurred. From the observable N-K syndrome values $S_0, S_1, \dots S_{N-K-1}$ find a <u>t-valid* Error-Locator Polynomial</u> $\Lambda(z)$

$$\lambda(x) = \sum_{i=0}^{N-1} \lambda_i x^i, \quad \lambda_{i_k} = 0, \, k = 1, \dots t \quad \Rightarrow \quad \Lambda(z) = \prod_{k=1}^t \left(1 - \alpha^{i_k} z \right) = 1 + \Lambda_1 z + \dots + \Lambda_t z^t$$

[* having t distinct zeroes in GF(q)] such that

$$\sum_{i=0}^{N-1} e_i \lambda_i x^i = 0 \implies E(z)\Lambda(z) \operatorname{mod}(z^N - 1) = 0 \equiv S(z)\Lambda(z) \operatorname{mod}(z^N - 1) = 0 .$$

This defines N equations. Of these N equations the N - K - t Key Equations contain only the observable syndrome values $S_0, S_1, \dots S_{N-K-1}$:

Necessary condition for existence of a unique solution for $\Lambda_1, \Lambda_2, \dots, \Lambda_t$: there are at least as many equations as unknowns, i.e., $N - K - t \ge t \rightarrow t \le \lfloor (N - K)/2 \rfloor$. Hence correction of at most $t_g = \lfloor (N - K)/2 \rfloor$ symbol errors can be guaranteed.

Joint decoding of multiple RS codewords

• Find common error locator polynomial for a block of Interleaved Reed-Solomon (IRS) codewords:

(a) Number of equations, decoding capability, decoding failure probability

(b) Multi-sequence Berlekamp-Massey algorithm

G. Schmidt, "Algebraic Decoding beyond half the minimum distance based on shift register synthesis", Ph.D Dissertation, University Ulm, Germany, 2007.

When t column errors occur: system of equations

Assume a block of *M* received RS codewords with *t* columns containing at least one symbol in error. Let the zeroes of the common error locator polynomial $\Lambda(z) = 1 + \Lambda_1 z + \Lambda_2 z^2 + \cdots + \Lambda_t z^t$ coincide with the positions of the error-ed columns. The coefficients of $\Lambda(z)$ satisfy

Necessary condition for a unique solution: there are at least as many equations as coefficients to be determined, i.e., $M(R-t) \ge t \implies (M+1)t \le MR \implies t \le \lfloor MR/(M+1) \rfloor = t_{max}$.

If rank (**U**) < t, multiple solutions can exist. One of them will be the correct $\Lambda(z)$. A given decoding algorithm will most likely not decide for the correct $\Lambda(z)$.

When t column errors occur: decoding capability

A decoder determines the correct codeword with probability $P_c(t)$, fails to decode with probability $P_f(t)$, and determines an incorrect codeword with probability $P_e(t)$: $P_c(t) + P_f(t) + P_e(t) = 1$. For IRS codes: $P_f(t) >> P_e(t)$ (as for individual decoding).

- If $t \le t_g = \lfloor R/2 \rfloor$: rank (U) = t guaranteed. Decoding always successful.
- If $t_g < t \le t_{\max} = \lfloor MR/(M+1) \rfloor$: rank (U) $\le t$. Decoding successful except when with low probability rank (U) < t. Prob[rank(U) < t] tightly upperbounds $P_f(t)$.
- $t > t_{\text{max}}$: rank (U) < t. Decoding always fails.

Example: RS(255,239)

Decoding codewords individually: $t \le t_g = (255 - 239)/2 = 8$ errors can be corrected.

Decoding M = 3 interleaved codewords: errors in $t \le t_{max} = 3(255-239)/4 = 12$ columns can be corrected with high probability.

When t column errors occur: decoding failure probability

M=3, RS(*N*=255,*K*=239;*T*=8) over GF(256): $t_g = 8$, $t_{max} = 12$

Find the shortest polynomial $\Lambda(z) = 1 + A_1 z + \cdots + A_\ell z^\ell$ which generates from initial syndromes $S_0^i \dots \ell - 1, 0 \le i \le M - 1$, recursively the remaining syndromes $S_\ell^i \dots R - 1$: $\sum_{k=1}^{\ell} S_{j-k}^i \Lambda_k = -S_j^i$ for $0 \le i \le M - 1$, $j = \ell, \ell + 1, \dots R - 1$.

Multi-sequence shift register synthesis

Assume processing has proceeded from (0,0) in column-row order up to (i,j). $\Lambda(z) = 1 + \Lambda_1 z + \cdots + \Lambda_\ell z^\ell$ is the shortest polynomial that generates from $S_0^i \dots \ell_{-1}$, $0 \le i \le M - 1$, in continued column-row order the syndromes $S_\ell^0 \dots S_j^{i-1}$. However, at (i,j) a non-zero discrepancy occurs: $d_j^i = \sum_{k=1}^\ell S_{j-k}^i \Lambda_k + S_j^i \neq 0$.

Then $\Lambda(z)$ is updated by the currently active *helper polynomial* for the *i*-th row to obtain a new $\Lambda(z)$ with zero discrepancy also at (i,j), and $\Lambda(z)/d_j^i$ may become the new *helper polynomial* $H^i(z)$, j^i , ℓ^i for the *i*-th row associated with unit discrepancy, (next slide).

(The initialization of the M helper polynomials is simple, however, functionally hard to explain.)

Multi-sequence shift register synthesis

Multi-sequence Berlekamp-Massey algorithm

/* Initialization */

$$\Lambda(z) = 1; \ \ell = 0; \ // \text{ initial error locator polynomial}
for i=0 to M-1 { Hi(z)=1; ji=-1; \elli=0; } // \text{ initial helper polynomials}
/* Loop */
for j=0 to R-1
{ for i=0 to M-1
{ d = S_j^i + $\sum_{k=1}^{\min(j,\ell)} A_k S_{j-k}^i \ // \text{ compute discrepancy}
 if d \neq 0 \ // \text{ discrepancy is non-zero}
 { $\ell = \ell; \ \Lambda(z) = \Lambda(z); \ // \text{ save current error locator polynomial}
 // update err. loc. poly. with discrepancy and i-th helper polynomial
 l = max (\ell, j - j^k + \ell^k); \ \Lambda(z) = \Lambda(z) - d \operatorname{H}^i(z) z^{j-j^i};$
 if $\ell > \tilde{\ell} \ // \text{ length of err. loc. poly. increased}
 { // normalize } \tilde{\Lambda}(z) \text{ for unity discr. and store as new i-th helper poly.
 ji = j; \ \ell^i = \ell; \ \operatorname{H}^i(z) = d^{-1} \tilde{\Lambda}(z);$
 } }$$$

Performance evaluation by simulation

- Combining individual decoding and joint decoding
- Gilbert model of additive burst-noise channel

 Simulation results: block-interleaved RS coding + uncoded 16-QAM

 Simulation results: block- and convolutionallyinterleaved RS coding + 16s4d trellis-coded 32-QAM (as in ADSL) For received *i-th* codeword do $(i = \dots 0, 1, 2, 3, \dots)$

- 1. Decode *i-th* codeword individually: compute syndromes, determine error locator polynomial (ELP), and check ELP validity. Save syndromes in a cyclic buffer for *M* codewords.
- 2. If for at least one of the last *M* codewords a valid ELP could not be found, determine a joint ELP for the last *M* codewords and check ELP validity.

Steady-state probability of being in good/bad state

$$P_g = P_{gb}/(P_{gb} + P_{bg})$$
; $P_b = P_{bg}/(P_{gb} + P_{bg})$ (= frequency of noise bursts)

Average number of intervals spend in good/bad state

 $\overline{n}_g = 1/P_{bg}$; $\overline{n}_b = 1/P_{gb}$ (= average length of burst noise)

Given: P_b and \overline{n}_b . Computation of P_{gb} and P_{bg}

$$P_{gb} = 1/\overline{n}_b \quad ; \quad P_{bg} = P_b / [\overline{n}_b (1 - P_b)]$$

Simulation: uncoded modulation, block interl. RS coding

D=16 block-interleaved codewords RS(N = 96, K = 80; T = 8) over GF(256), transmitted over **uncoded 16-QAM** channel with **AWGN & burst noise** ($SNR_g = 22 \text{ dB}$, $SNR_b = 0 \text{ dB}$, $P_b=0.05$, $n_b=8$)

n ... # of symbol errors per codeword, t ... # of column errors per subblock of M codewords

D=32 block-interleaved codewords RS(N = 96, K = 88; T = 4) over GF(256), transmitted over uncoded 16QAM channel with AWGN & burst noise ($SNR_g = 22 \text{ dB}$, $SNR_b = 0 \text{ dB}$, $P_b=0.04$, $n_b=30$)

1	0	6	6	
1	ñ	5	5	
<u>-</u>	ñ	4	5	
1	0	5	5	hannan an a' an
-	0	5	5	
-	0	5	6	
-	0	5	6	
-	0	5	5	
1	0	5	5	···ee········e········e···············
0	0	4	4	···ee
0	0	4	4	···ee
0	0	4	4	···ee
0	0	4	4	···ee
0	0	4	4	···ee
0	0	4	4	···ee
0	0	4	5	· ee
0	0	4	5	· <mark>ee</mark>
0	0	4	5	<mark>e</mark>
0	0	4	6	· <mark>e</mark>
0	0	3	6	• <mark>e</mark>
1	0	5	5	e
0	0	4	5	
1	0	5	7	e
1	0	5	7	
1	1	7	7	
1	1	7	7	
1	0	5	5	
1	0	5	5	<mark>e</mark>
1	0	5	5	
0	0	4	4	eeee
0	0	4	5	
0	0	4		e
1	0	5		ee
\uparrow	Ŷ			
	ĺ			
	,	JC	Din	t decoding ($M = 3, t_{max} = 6$): 2 decoding failures
_				

Individual decoding ($t_g = 4$): 16 decoding failures

Simulated "ADSL": block or convol. interl. RS, 16s4d TCM, Gilbert burst noise

Models transmission of scrambled all-zero RS codewords

Simulation: 16s4d TCM, block interleaved RS coding

16s4d trellis coded 32-QAM, VDdel=32; stationary AWGN (no burst noise) RS(N=255, T=8) over GF(256); block interleaving D = x; M = y;

0 05Feb09 Decoding failure rate $\log_{10}(P_f)$ Individual decoding, $t_a = 8$ -3 Individual and joint decoding -4 *D* = 16 *D* = 4 *D* = 2 D = 1M = 3*M* =3 *M* =2 -5 $t_{max} = 12$ $t_{max} = 12$ $t_{max} = 10$ 15.5 15.75 16.25 16.5 16.75 17 17.25 17.5 17.75 16 SNR [dB]

No burst noise: "coding gain" by joint decoding < 0.1 dB

Decoding failure rate P_f versus SNR, no burst noise

Simulation: 16s4d TCM, convol. interl. RS coding (G.992.1)

16s4d trellis coded 32-QAM, VDdel=32; Gilbert noise $SNR_g = SNR_b = x dB$; RS(*N*=255,*T*=8) over GF(256); convolutional interleaving *D* = 32; *M* = 3;

Decoding failure rate P_f versus SNR, no burst noise

Simulation: 16s4d TCM, convol. interl. RS coding (G.992.1)

16s4d trellis coded 32QAM, VDdel=32; Gilbert noise $SNR_g = 17$ dB, $SNR_b = 12$ dB, $P_b = y$, $n_b = x$; RS(N=255,T=8) over GF(256), convolutional interleaving D = 32; M = 3;

Decoding failure rate P_f versus average burst length n_b

Average burst length n_b (in QAM symbols)

Deep convolutional interleaving (D>>N) and joint decoding of multiple RS codewords

 Correct very long error bursts, e.g., when entire OFDM symbols are wiped out

• Convolutional interleaving in VDSL-2 and in Data-Over-Cable downstream (J.83)

 Illustration of the effect of long error bursts after deinterleaving

 Approaching full erasure-decoding capability without erasure indications

Convolutional interleaving in VDSL2 (G.993.2, 02/2006)

- Codewords: RS(*N*,*K*) over GF(256), $N \in \{32, 33, \dots 255\}$, $R = N K \in \{0, 2, 4, 6, \dots 16\}$; T = R/2
- Interleaving (general type): *interleaver block length* I = N/q, $q \in \{1, 2, 3, \dots 8\}$, *interleaver depth* $D \le D_{\text{max}}$ such that gcd(I,D) = 1, $D_{\text{max}} = 2048, 3072$, or 4096.

Let $\mathbf{c}_i = [c_{i,0}, c_{i,1}, \dots c_{i,N-1}]$ be the *i*-th RS codeword. The temporal position of RS symbol $c_{i,j}$ before interleaving is $s = Ni + j = Ni + I j_1 + j_0$, $i \in \mathbb{Z}$, $0 \le j = I j_1 + j_0 < N$ $(0 \le j_1 < q, 0 \le j_0 < I)$. The interleaver changes the symbol order such that after interleaving $c_{i,j}$ occurs at temporal position $t = Ni + I j_1 + D j_0$. The condition gcd(I,D) = 1 ensures collision-free permutation, i.e., $s \ne s'$ implies $t \ne t'$.

Let I_D^{-1} $(1 \le I_D^{-1} < D)$ be the multiplicative inverse of I such that $I \cdot I_D^{-1} \mod D = 1$. Let $D_I^{-1} (1 \le D_I^{-1} < I)$ be the multiplicative inverse of D such that $D \cdot D_I^{-1} \mod I = 1$. Note that $I_D^{-1}I + D_I^{-1}D = 1 + ID$.

Inverse mapping $t \to (i, j = I \ j_1 + j_0)$: $j_0 = t \cdot D_I^{-1} \mod I$, $j_1 = [(t - D \ j_0)/I] \mod q$, $i = (t - N \ j)/N$.

Convolutional interleaving in cable systems (J.83, 12/2007)

- J.83 Annex B: Extended codewords RS(N=128,K=122;T=3) over GF(128). Convolutional interleaving, reduced mode: (I,J) = (128,1), (64,2), (32,4), (16,8), (8,16); enhanced mode: (I,J) = (128, 1 to 8).
 (N/I = q = 1 to 8)
- J.83 Annex C & D: Shortened codewords RS(N=204,K=188;T=8) over GF(256). Convolutional interleaving: (I,J) = (12,17). (N/I = q = 17)

Convolutional interleaver: special type (Forney 1971)

Convolutional interleaving: long error burst

N, *I*, *D* assumed to be large

Convolutional interleaving, joint decoding of *M* codewords

RS(*N* = 33, *K* = 29; *T*=2) *N*=*I* = 33, *D* = 128 (*D* >> *N*, deep interleaving)

Error burst from t = 0 to t = 349 ($t_0 = 0$, L=350)

Correction by individual decoding fails because $t_g = T = 2$.

Correction by sliding joint decoding with M = 3, $t_{max} = 2T \ge M/(M+1) = 3$ succeeds.

Sliding joint decoding achieves burst error correction similar to full-erasure decoding without requiring erasure indications (which often can be wrong).

- Joint decoding of received RS codewords in combination with a first pass of individual decoding reduces RS decoding failures typically by a factor of 10 in the presence of burst noise, provided errors are sufficiently aligned column-wise in consecutively received deinterleaved codewords.
- Column-wise alignment of burst errors occurs naturally for block interleaving, but not for convolutional interleaving.
- Joint decoding needs to be invoked only when in a sliding window of *M* consecutively received codewords one or more codewords cannot be decoded individually.
- The number of jointly decoded codewords can and should be rather small; often it suffices to choose *M* = 3.
- The multi-sequence extension of the Berlekamp-Massey algorithm (eBMA) appears to be the most practical algorithm for solving the joint error-locator polynomial problem; complexity of the eBMA is proportional to *T*² and *M*.

- Syndrome calculation and error evaluation can be shared between individual and joint decoding. Additional complexity for joint decoding results from storing *M* syndrome vectors, and occasionally performing the eBMA and checking ELP validity by Chien search.
- Convolutional interleaving with modest interleaving depth (D < N): consecutively received codewords should be cyclically rotated to align short burst errors in columns. This restricts codeword length to $N = 2^m$ -1 such that RS code is cyclic.
- Deep convolutional interleaving (D >> N) for correction of long error bursts: errors are sufficiently aligned in consecutively received codewords w/o rotation. Sliding joint decoding achieves burst error correction similar to full-erasure decoding (with allcorrect erasure indications), but does not require erasure indications.