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Abstract

Recent approaches to Independent Component Analysis (h@#9 used kernel independence mea-
sures to obtain highly accurate solutions, particularlyerehclassical methods experience difficulty (for
instance, sources with near-zero kurtosis). FastKICAt(H&C-based Kernel ICA) is a new optimisation
method for one such kernel independence measure, the H8bbmidt Independence Criterion (HSIC).
The high computational efficiency of this approach is aahieby combining geometric optimisation
techniques, specifically an approximate Newton-like méto the orthogonal group, with accurate
estimates of the gradient and Hessian based on an incon@etiesky decomposition. In contrast to
other efficient kernel-based ICA algorithms, FastKICA iplgable to any twice differentiable kernel
function. Experimental results for problems with large r@rs of sources and observations indicate that
FastKICA provides more accurate solutions at a given cast tiradient descent on HSIC. Comparing
with other recently published ICA methods, FastKICA is catifive in terms of accuracy, relatively
insensitive to local minima when initialised far from indgmlence, and more robust towards outliers.

An analysis of the local convergence properties of FastKI€Arovided.
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Independent component analysis, Hilbert-Schmidt inddpeoe criterion, kernel methods, approxi-
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. INTRODUCTION

The problem of Independent Component Analysis (ICA) ineshthe recovery of linearly mixed,
statistically independent sources, in the absence of nmdtion about the source distributions beyond
their mutual independence [1], [2]. The performance of IQdodthms thus depends on the choice of
the contrast function measuring the degree of statistimdpendence of the recovered signals, and on
the optimisation technique used to obtain the estimatednignigoefficients.

Classical approaches, also referred to as parametric Ig#oaphes, construct their independence
criteria according to certain hypothetical propertiestad probability distributions, either by an explicit
parametric model of these distributions via maximum liketid [3], or by maximising certain statistics of
the unmixed sources (often measures of non-Gaussiandly,asithe kurtosis) [2], [4]. These approaches
can therefore be less powerful than methods which explicitbdel the source distributions, and can
even fail completely when the modelling assumptions aresatisfied (e.g. a kurtosis-based contrast will
not work for sources with zero kurtosis).

More recently, several approaches to ICA have been propthedddirectly optimise nonparametric
independence criteria. One option is to minimise the mufakrmation between the sources, as in [5]-
[8]. Another approach is to use a characteristic functiasdal measure of mutual independence due to
Kankainen [9] based on the pairwise criterion of Feuervef@@], which was applied to ICA in [11],
[12], and to ICA with post-nonlinear mixing in [13], [14].

Finally, a variety of kernel independence criteria havenbemployed in ICA. These criteria measure
dependence using the spectrum of a covariance operatoedetmappings of the variables to high
dimensional feature spaces, specifically reproducingdtatilbert spaces (RKHSs) [15]. The various
kernel independence criteria differ in the way they sumseathe covariance operator spectrum, and in
the normalisation they use. They include the kernel cambrdorrelation [16], the kernel generalised
variance [16], the spectral norm of the covariance opef@@CO) [17], the kernel mutual information
[17], and the Hilbert-Schmidt Independence Criterion (E)S[18]. A biased empirical estimate of the
HSIC statistic is in fact identical (as a function of its kekFargument) to the characteristic function-based
criterion of [10], which is in turn identical to thé, distance between Parzen window estimates of the
joint density and the product of the marginals: see Rosé&nfl8]. When a Gaussian kernel is used
and the sample size is fixed, the three statistics correspractly. As pointed out elsewhere [9], [10],
however, the characteristic function-based statistic @engeneral than Rosenblatt’s, since it admits a

wider range of kernels while remaining an independence urega further difference is that the kernel
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bandwidth may remain fixed for increasing sample size). wike, there exist universal kernels (in the
sense of [20]: that is, kernels for which HSIC is zero iff thaiables are independent, fany probability
distribution [17, Theorem 6]) which have no equivalencehwiiie characteristic function-based criterion
of [9], [10]: examples are given in [20, Section 3] and [21¢c@®® 3]! Thus, the RKHS criterion is
a more general dependence measure than the characteunistiton criterion, which is in turn more
general than thé; distance between Parzen window density estimates. Siecel$C-based algorithm
performs as well as or better than the remaining kernel digrese criteria for large sample sizes [18]
on the benchmark data of [16], we use it as the contrast fumati our present algorithm.

While the above studies report excellent demixing accuyrefigient optimisation of these dependence
measures for ICA remains an ongoing probleand a barrier to using nonparametric methods when the
number of sourcesy, is large. The main focus of the present work is thus on mdrei&iit optimisation
of kernel dependence measures. ICA is generally decomposedwo sub-problems [1], [12]: signal
decorrelation or whitening, which is straightforward asdiot discussed further, and optimisation over
the set of orthogonal matrices (the orthogonal grapn)), which is a differentiable manifold, and for
which the bulk of the computation is required. The approatcfild], [16]-[18] is to perform gradient
descent orO(m) in accordance with [24], choosing the step width by a Gold=arch. This is inefficient
on two counts: gradient descent can require a very large auoilsteps for convergence even on relatively
benign cost functions, and the Golden search requires nastly@valuations of the dependence measure.
Although [23] propose a cheaper local quadratic approjonato choose the step size, this does not
address the question of better search direction choice. [#nnative solution is to use a Jacobi-type
method [5], [6], [11], where the original optimisation ptetn onO(m) is decomposed into a sequence
of one-dimensional sub-problems over a set of pre-deterthinirves, parameterised by the Jacobi angles.
While the theoretical convergence properties of a Jacopicgeh as compared with direct optimisation
on O(m) are beyond the scope of this work, we perform an empiricaluati@n against algorithms
employing optimisation over Jacobi angles in our experitsien

In the present study, we develop an approximate Newtonrik¢éhod for optimising the HSIC-based
ICA contrast overO(m), namely Fast HSIC-based Kernel ICA (FastKICA). A key featwf our

approach is its computational efficiency, due to both the tdavlike optimisation and accurate low
1The RKHS approach also allows dependence testing on moerajesiructures such as strings and graphs [22].

2Most of the effort in increasing efficiency has gone into ghgand accurately approximating the independence measure
(8], [12], [16], [23].
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rank approximations of the independence measure and itgatiees. Importantly, these techniques
do not require particular mathematical properties of the &eife.g. compact support, or that it be
Laplace), but can be applied directly for any twice diffdigble kernel function. The optimisation strategy
follows recent studies on Newton-like methods for numérigaimisation on smooth manifolds in [25].
Approximate Newton-like algorithms have previously beemaloped in the case of classical ICA contrast
functions [26], [27], where the authors use the diagonakstire of the Hessian at independence to greatly
reduce complexity and computational cost. These earlighaaks share the significant property of local
quadratic convergence to a solution with correct sourcarsgipn. We show the HSIC-based ICA contrast
likewise has a diagonal Hessian at independence (this siaalyiginally appeared in [28]; note also that
the diagonal property doesot hold for the multivariate characteristic function-edscounterpart [9] to
the HSIC-based contrast), and that FastKICA is locally gatichlly convergent to a correct unmixing
matrix. Moreover, our experiments suggest that in the ateseha good initialisation, FastKICA converges
more often to a correct solution than gradient descent ndsth@revious kernel algorithms require either
a large number of restarts or a good initial guess [12], [1B4]. The current work is built on an earlier
presentation by the authors in [29]. Compared with [29], phesent study contains proofs of the main
theorems (which were omitted in [29] due to space conssgiatproof of local quadratic convergence in
the neighbourhood of the global solution; additional ekpents on ICA performance vs “smoothness”
of the departure from independence; and experiments oieordbkistance, for which our method strongly
outperforms the other tested approaches.

The paper is organised as follows. In Section Il, we briefliraduce the instantaneous noise-free
ICA model, the HSIC-based ICA contrast, and a Newton-likethod on O(m). In Section 1ll, we
analyse the critical point condition and the structure af ttessian of this contrast. We describe our
ICA method, FastKICA, in Section IV, and prove local quadratonvergence. We also present an
efficient implementation of FastKICA, based on the incortgl€holesky decomposition [30]. Finally,
our experiments in Section V compare FastKICA with sevemhgeting nonparametric approaches:
RADICAL [5], MILCA [6], mutual information-based ICA (MICA [31], and KDICA [8]. Experiments
address performance and runtimes on large-scale probfgnf®rmance for decreasing smoothness of
the departure of the mixture from independence (which mdkesixing more difficult for algorithms that
assume smooth source densities), and outlier resistaratatMcode for FastKICA may be downloaded

at www.kyb.mpg.de /bs/people/arthur/fastkica.htm
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[l. PRELIMINARIES: ICA, HSIC AND NEWTON-LIKE METHOD ONO(m)
A. Linear Independent Component Analysis

The instantaneous noise-free ICA model takes the form
Z = AS, (D)

where S € R™*™ is a matrix containing: observations ofn sources, A € R™*™ is the mixing matrix
(assumed here to have full rankand Z € R™*" contains the observed mixtures. Denotesaand z
single columns of the matrices and Z, respectively, and let; be thei-th source ins. ICA is based on
the assumption that the componenrisof s, for all i = 1...m, are mutually statistically independent.
This ICA model (1) is referred to a@sstantaneous as a way of describing the dual assumptianshti
observation vector depends only on the source vectoat that instant, and the source sampiesre
drawn independently and identically froir,. As a consequence of the first assumption, the mixture
samples: are likewise drawn independently and identically frém,.

The task of ICA is to recover the independent sources via atmate B of the inverse of the mixing
matrix A, such that the recovered signals = BAS have mutually independent components. It is
well known that if at most one of the sourcesis Gaussian, the mixing matrid can be identified
up to an ordering and scaling of the recovered sources [l leans the unmixing matri® is the
inverse of A up to anm x m permutation matrix? and anm x m diagonal (scaling) matribxD, i.e.,

B = PDA™'. To reduce the computational complexity the mixtutésare usually pre-whitened via
principal component analysis (PCA) [1], [12]. Whiteningr@sponds to finding a matrik’ € R™*™
such thatW = VZ = VAS € R™™ with E[ww'] = I, where W are referred to as the whitened
observations. While this pre-whitening step is less dte#ily efficient than solving directly for the
unconstrained mixing matrix [4, Section VI.B], the optimi®n problem in the pre-whitened case is
easier. Assuming the sourcgshave zero mean and unit variance, we find € R™*™ to be orthogonal.

Therefore, the whitened noise-free ICA unmixing model lnees
Y =X"W, 2)

where X € R™*™ is an orthogonal unmixing matrix (i.,eX' X = I), andY € R™*" contains our

estimates of the sources. L&{m) denote the orthogonal group:

O(m) :={X e R™™MXTX =T}. (3)

3In other words, we do not address the more difficult problefmsrmlercomplete or overcomplete ICA (corresponding to

more mixtures than sources, or fewer mixtures than sourespgctively).
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We focus in the remainder of this work on the problem of findiige O(m) so as to recover the
mutually statistically independent sources via the mo@@l Thus, we next describe our measure of

independence.

B. The Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt Independence Criterion (HSIC) is aabiste independence measure obtained as
the squared Hilbert-Schmidt (HS) norm of the covarianceraipe between mappings to RKHSs [18],
and generalises the characteristic function-based ioniteriginally proposed by Feuerverger [10]. The
Hilbert spaceF of functions from a compact subgétC R to R is an RKHS if at each € U, the point
evaluation operatof,, : F — R, which mapsf € F to f(u) € R, is a continuous linear functional.
To each pointu € U, there corresponds an elemenf € F, also called thefeaturemap, such that
(ay, ) 7 = P(u,u'), wherey: U xUU — R is a unique positive definite kernel. We also define a second
RKHS G with respect ta/{, with feature map3, € G and corresponding kerngb,, 3,/); = J(u,v’).

Let Pr,, be a joint measure ofi/ x U,I" x A) (hereI' and A are Borels-algebras orif), with

associated marginal measuies, and Pr,. The covariance operata@r,, : G — F is defined as

(f; Cun(9)) 7 = E[f (w)g(v)] — E[f (w)]E[g(v)] (4)
for all f € F andg € G. The squared HS norm of the covariance operétgy, denoted as HSIC, is
then

|Cunlis = Buaror [ (') & (0,07)] (52)
+ Eur [0 (,0)] Bvr [0 (v,0)] (5b)
— 2By [Bur [10 (u,0)] By [ (0,0)]] (5¢)

(see [18] for details), whereu, v) ~ Pr,, , and(v/,v') ~ Pr,,, are independent random variables drawn
from the same distribution, and[-] denotes the expectation over the corresponding randorablesi.

As long as the kernelg(u,-) € F andzZ(u, -) € G are universal in the sense of [20], e.g., the Gaussian
and Laplace kernels|Cy, |4 = 0 if and only if v andv are statistically independent [18, Theorem 4.

In this work, we confine ourselves to a Gaussian kernel, apdthes same kernel for both and g,

b(a,) = P(a.b) = ¢la—b) = exp (~ 5 ). (6)
As discussed in the introduction, the empirical expres§wrHSIC in [18] is identical to Feuerverger's

independence criterion [10] and Rosenblatfsindependence statistic [19] for a Gaussian kernel at a

given sample size.
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We now construct an HSIC-based ICA contrast for more thanramdom variables. In the ICA model
(1), the components; of the sources are mutually statistically independent if and only if theiobability
distribution factorises a®r, = [[;*, Pr,,. Although the random variables are pairwise independent if
they are mutually independent, where pairwise indepereléndefined adr,, Pr,, = Pr,, ,, for all
i # j, the reverse does not generally hold: pairwise indepereddnes not imply mutual independence.
Nevertheless, Theorem 11 of [1] shows that in the ICA settinmgmixed components can be uniquely
identified using only the pairwise independence betweenpoorents of the recovered sourcgs since
pairwise independence between component¥” ah this case implies their mutual independence (and
thus recovery of the sourcéd.* Hence, by summing all unique pairwise HSIC measures, an Haked

contrast function over the estimated signelsE R™*" is defined as

H:0(m) — R,
H(X) = Zm: Ex, [¢> (%kaz> ¢ (%kalﬂ (79)
1<i<j<m
+ Egy [Qﬁ (%kalﬂ Eg,i [(ﬁ (%T@klﬂ (7b)
— 2By, [Ez [¢ <962T wklﬂ E [@Zﬁ (Cﬂ;r@kl)ﬂ ; (7¢)

where X := [z1,..., 2] € O(m), Wy = w; —w; € R™ denotes the difference betweérth andi-th

samples of the whitened observations, &@hg|-] represents the empirical expectation overkalind!.

C. Newton-like Methods on O(m)

In this section, we briefly review some basic concepts reggmewton-like methods on the orthogonal
groupO(m). We refer to [32], [33] for an excellent introduction to @ifential geometry, and to [34] for
an introduction to optimisation algorithms on differeile manifolds. We will review both the classical
approach to Newton-type optimization on smooth manifol24], and then describe a more recently
developed Newton-like method [25], which we apply Ofm).

We consider the orthogonal group(m) as anm(m — 1)/2 dimensional embedded submanifold of
R™*™ and denote the set of all x m skew-symmetric matrices byo(m) := {Q € R™*™|Q = —QT}.

Note thatso(m) is isomorphic toR™(™~1)/2  written so(m) = R™(™~1)/2, The tangent spacBy O(m)

“That said, in the finite sample setting, the statistical grenince obtained by optimizing over a pairwise indepenelenc

criterion might differ from that of a mutual independencéezion.
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Fig. 1. lllustration of a Newton-like method af(m).

of O(m) at pointX € O(m) is given by
TxO(m) := {E € R™™|E=XQ, Q€s0(m)}. (8)

A typical approach in developing a Newton-type method fdirojsing a smooth functiod? : O(m) — R

is to endow the manifold(m) with a Riemannian structure: see [24]. Rather than moviag@h straight
line as in the Euclidean case, a Riemannian Newton iteratiomes along a geodesin O(m). For a
given tangent space directiGh= X2 € TxO(m), the geodesigx throughX € O(m) with respect to
the Riemannian metricX Q;, XQs) := — tr Q1Qo, for XQq, XQy € TxO(m), is

vx : R — O(m), e Xexp (eX'EB), 9)

with vx(0) = X and4x(0) = =. Here,exp(-) denotes matrix exponentiation. It is well known that this
method enjoys the significant property of local quadrabovergence.

More recently, a novel Newton-like method on smooth madgalas proposed [25]. This method has
lower complexity than the classical approach, but retdiesprroperty of local quadratic convergence. We
adapt the general formulation from [25] to the present sgttihe orthogonal group(m).

For every pointX € O(m), there exists a smooth map
px: R™MMDEZ 5 O(m),  px(0) = X, (10)

which is a local diffeomorphism around € R™(™m=1/2 je. both the mag.x and its inverse are

locally smooth around. Let X* € O(m) be a nondegenerate critical point of a smooth contrast ilomct

>The geodesic is a concept on manifolds analogous to theistrdtie in a Euclidean space . It allows parallel transpimta

of tangent vectors on manifolds.
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H: O(m) — R. If there exists an open neighborhotdX*) ¢ O(m) of X* € O(m) and a smooth
map
i UX™) x RMmM=D/2  O(m), (11)

such thatii(X, Q) = ux(Q) for all X € #(X*) andQ € R™™D/2 we call {ux} xecu(x-) a locally
smooth family of parametrisations aroud .

Let X € O(m) be thek-th iteration point of a Newton-like method for minimisinget contrast
function H. A local cost function can then be constructed by compodiegdriginal functiond with
the local parametrisationx, aroundXy, i.e., H o ux, : Rm(m=1)/2 _, R which is a smooth function
locally defined on the Euclidean spaB&(™~1/2_ Thus, one Euclidean Newton st€pe R"("—1)/2

for H, expressed in local coordinates, is the solution of thealiregjuation
H(H o px,)(0)2 = —V(H o j1x,)(0), (12)

where V(H o ux,)(0) and H(H o ux,)(0) are respectively the gradient and Hessianfbb py, at
0 € R™m=1/2 with respect to the standard Euclidean inner product on #narpeter spacg”(m—1)/2,
Finally, projecting the Newton stef in the local coordinates back 1@(m) using the local parametri-
satiorf 11, completes a basic iteration of a Newton-like method(m») (see Fig. 1 for an illustration
of the method).

We now describe our choice of local parametrisatiop of O(m), which follows directly from the
geodesic expression (9). We defifle= (w;;){_, € so(m) as before and lef) = (wij)i<i<j<m €
R™™=1)/2 in a lexicographical order. A local parametrisation@fm) around a pointX € O(m) is
given by

px: RPMMD2 66(m) - O(m), Q— X exp(Q), (13)

which is a local diffeomorphism arourde R™™~1/2 e ux(0) = X.
To summarise, a Newton-like method for minimising the casitrfunctionH: O(m) — R can be

stated as follows:

bIn the general setting, the second parametrisation candoe dr different family to the first: see [25] for details. Thésriot

the case for our algorithm, however.
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Newton-like method orO(m)

Step 1: Given an initial gues¥, € O(m) and setk = 0.
Step 2: Calculated o iy, : R™("=1/2 = 50(m) — R.
Step 3: Compute the Euclidean Newton step, i.e., solve
the linear system fof2 € R™(m—1)/2,
H(H o ux, )(0)Q = —V(H o ux,)(0).
Step 4: SetX; 41 = vx, (Q).
Step 5: If | Xx11 — Xk||r is small enough, stop.
Otherwise, sek = k£ + 1 and go to Step 2.

Here,||- || is the Frobenius norm of matrices. According to Theorem 225i,[this Newton-like method
is locally quadratically convergent t§* € O(m). For an approximate Newton-like method ©im ), we
replace the true Hessia(H o.x)(0) by an approximate Hessid(H o .x )(0) which is more efficient

to compute. We will prove that local quadratic convergerscstill obtained with this approximation.

[1l. THE HSIC-BASED ICA CONTRAST AT INDEPENDENCE
In this section we examine the critical points of the HSIGdxh ICA contrast at independence. It
turns out that any correct unmixing matrix which is a globahimum of the HSIC-based contrast is a

nondegenerate critical point.
Let X = [z1,...,2m] € O(m). By the chain rule, the first derivative dff in the direction= =

[517 s 7£m] S TXO(m) is

DH(X)E = L (Hovx)(E)|__,

= i Ex,; [¢/ (%T wkl) &l Wi (w;r@kz)] (14a)
i j=T5i]
+ E. {(Zﬁ/ (%T@ko 5;@“} B, [(ﬁ (%TWMH (14b)
— 2K, [El [<Z3/ (%T Wkl) & wkl] E; [(Zﬁ (ij@kl)H - (14c)

Setting the above derivative to zero, we can characterigecthtiical points of the HSIC-based ICA
contrast function defined in (7). Obviously, the criticairgacondition depends not only on the statistical

characteristics of the sources, but also on the properfiéiseokernel function. It is hard to characterise
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all critical points of HSIC in full generality: thus, we deahly with those critical points that occur at
the ICA solution.

Lemma 1. Let X* € O(m) be a correct unmixing matrix of the model (2). Th&ri is a nondegenerate
critical point of the HSIC-based ICA contrast (7), i.®,H(X*)= = 0 for arbitrary = € T'x-O(m).

Proof: We recall that||Cy.|/%g > 0 and ||Cy,|%g = 0 if and only if Pr,, = Pr,Pr,. In other
words, X* € O(m) is a global minimum of the HSIC-based contrast function.dreen 4 in [18] shows
that any small displacement df* € O(m) along the geodesics will result in an increase in the score
of the contrast functiorf{ between the recovered sources (only larger perturbatemgs,a swap of the
source orderings, would yield independent sources). Atiogrto Theorem 4.2 in [35], the Hessian of
H at X* is positive definite. Hence, any correct separation pdihte O(m) is a nondegenerate critical
point of the HSIC-based contrast functié¢h |

In what follows, we investigate the structure of the Hessiithe HSIC-based contragf at indepen-
dence, i.e. at a correct unmixing matk* € O(m). We first compute the second derivative Hf at

X € O(m) in direction= = [&1,...,&y] € TxO(m),

e=0
_ 12?:# i [qs”( jwkl> ¢ wklwkl&qﬁ(x;-rwklﬂ (15a)
1,j=117#]
B |¢f (2] W) 672X w00 (v T )| (15b)
+ Egy :<;5’ (xZT wkl>§ Wi W50 (xkalﬂ (15c)
+ B [0 (2] 0w ) €T wwli&s| B [0 (2] )| (15d)
B |of (2] W) 72X 00| B |6 (2] D) | (15¢)
srefo(Tm) ol (5w g a9
- o) mare o) | 50
+ 2Fy, :El [gb/ (wf @) & EXTml]El[ (=] wkl)H (15h)
-5 o )T () ] s
Let © = [wi,...,wm] = (i)™ _; € s0(m). For X = X*, a tedious but straightforward computation
(see Appendix A) gives
D2H(X)(XQ,XQ)| .= i Wi (Kij + Kji) 5 (16)
1<i<j<m

April 9, 2009 DRAFT
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where
Kij = 2B [Bq[Skis Bt [0 (Shio)] | B [Ea[Sri; ) Ea [0 (Ski)]] (17a)
+ Epa[¢" (50i) [ En [ (5rj)* 6 (5115)) (17b)
+ 2Bk, (511 )/Er1[6 (Stj)] (17c)
— 2B,1[0" Skt | B [Eal(Si5) 1Bt (S]] (17d)
— B[ Sk ) Shti B 1[0 (S ) S )- (17e)

Remark 1: Without loss of generality, 16® = (w;j)1<i<j<m € R™™~1/2 in a lexicographical order.
The quadratic form (16) is a sum of pure squares, which inegthat the Hessian of the contrast function
H in (7) at the desired critical point™ € O(m), i.e., the symmetric bilinear fortk H(X*): Tx-O(m) x
Tx-O(m) — R, is diagonal with respect to the standard basi&&f”~ /2. Furthermore, following the

arguments in Lemma 1, the expressions+ «;; are positive. 0

IV. FASTHSIC BASED ICA AND ITS IMPLEMENTATION

Having defined our independence criterion and its behawidundependence, we now describe an
efficient Newton-like method for minimising/ (X'). We begin in Section IV-A with an overview of the
method, including the approximate Hessian used to speedmpwtation. The subsequent two sections
describe how the Hessian (Section IV-B), as well l&6X) (Section IV-C) and its gradient (Section

IV-D), can be computed much faster using the incomplete €yl decomposition.

A. Fast HSC Based ICA Method
We compute the gradient and Hessianfbb .y in the parameter spad”(™~1)/2, By analogy with
equation (14), the first derivative df o ux at0 € R™(m=1)/2 js

D(H o px)(0)Q = £ (H o px)(eQ)|__,
m (18)

E Wij sz sz

<i<j

where

Tij = Z Ex, [ (96 wkl> xkal<Z5 (%«kal)]
r=1;r#£i
+Ey; {Qy (%kal) ijwkl] Ex, [<Z5 (UCTTWM>] (19)
— 2E; [El [qb, (azjw@ x]kal} E; [(;5 <$:@kl)H .
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Let Q := (g;;)!"_; € so(m) and V(H o pux)(0) = (gij)1<i<j<m € R™™~1/2 Then the Euclidean
gradientV(H o ;1x)(0) is given entry-wise ag;; = 7;; — 7j; for all 1 <i < j < m.

Similarly, the Hessian of the contrast functiéh can be computed directly from (15). The diagonal
property of the Hessian does not hold true for arbitrafye O(m), however, and it is clearly too
expensive to compute the true Hessian at each step of oumiagtion. Nevertheless, since the Hessian
is diagonal atX* (Eqg. (16)), a diagonal approximation of the Hessian makesesén a neighborhood
of X*. Thus, we propose a diagonal matrix for the Hessiariof px for an arbitraryX € O(m) at
0 € R™m=1/2: the result is a symmetric bilinear forf(H o jux)(0): R™m=1/2 5 Rmm=1/2 _, R,
Due to the smoothness of both the contrast funcitorin (7) and the mag: on O(m) in (11), the
HessianH (H o ux)(0) is smooth in an open neighborhodtd X*) ¢ O(m) of X* € O(m). Replacing

the correct unmixing componentsin (17) by the current estimates= X "w, i.e. 3, = =] Wy, gives

m

H(Hopx)0)(Q,0)~ > wf (R + i), (20)
1<i<j<m
where

Rij = 2B B[ Ea[Q Tras) | JEr Ea [T /B [0t )]] (21a)

+ B [0 @t B[ Tra)* 6 Tga)] (21b)

+ 2E,1[¢" (1) B 1 [ (Tra )] (21c)

— 2B 1[¢" (Ur1a) Bk [Bal(Taty) B [0 (Tga)]] (21d)

— B[ Wi Ui Bt [0 (U Ut - (21le)

We emphasise that (by Remark 1) the Hessian at a correct imgninatrix X* is positive definite

(i.e. the termss;; + %;; are positive). Thus, the approximate Newton-like dirattibe R™(m—1)/2 with
J J

Gy = 2 (22)

Kij+Rji

for 1 <i < j <mis smooth, and is well defined withid(X*). We call the Newton-like method arising
from this approximation Fast HSIC-based Kernel ICA (Fa&iK).

Although the approximation (20) can differ substantialtgrh the true Hessian at an arbitraly
O(m), they coincide atX*. Thus, while the diagonal approximation is exact at theemirsolution, it
becomes less accurate as we move away from this solutionn3are FastKICA is nonetheless well
behaved as the global solution is approached, we providdalleving local convergence result (we
investigate the performance of our algorithm given arbjtiaitialisation in our numerical experiments:

see Section V).
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Corollary 1: Let X* € O(m) be a correct unmixing matrix. Then FastKICA is locally quatirally
convergent toX ™.
Proof: By considering the approximate Newton-like directifnin (22) asQ: U(X*) — so(m),
each iteration of FastKICA can be written as the map

A:UX")CO(m) — O(m), X— X exp(2(X)). (23)

A tedious but direct computation shows tIﬁ(tX*) =0, andX* is a fixed point of4. To prove the local
guadratic convergence of FastKICA, we employ Lemma 2.9 8],[Bearing in mind that the required
smoothness conditions (that the function be at least twitereintiable) are fulfilled byH (X'). According

to this lemma, we only need to show that the first derivativedof
D A: TxO(m) — Tx)O0(m), (24)
vanishes at a fixed poinX*. Thus we compute directly
D A(X*)(X*Q) = X*Q + X*DQ(X*)(X*Q). (25)
For the expression in (25) to vanish is equivalent to
Q=-DO(X*")(X*Q), (26)
e, foralll <i<j<m,
D& (X*)(X*Q) = —wjj. (27)

Denoting the numerator;; — 7;; in (22) by &E;‘)(X) and the denominatog;; + k;; by Cug.l)(X), we

compute
~ * * ‘711(7) X ~(d * *
D&y (X")(X*Q) = = St DI (X7) (X" Q)
DI (X*)(X*Q)
o (X7)

(28)
+

It can be shown that the first summand in (28) is equal to zeémallly, following an argument almost
identical to that in Appendix A,
D™ (X*)(X*Q) = D (X*)wy; (29)
1] 1] 1]

Thus, we conclude condition (26) holds trueXt, i.e.,D A(X™*) vanishes as required. The result follows.
[ |
We emphasise that the local convergence result is provdeipdpulation setting. In the finite sample

case, this theoretical convergence rate might not be aalbie\37]. For this reason, we experimentally
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compare the convergence behavior of FastKICA with a gradiased algorithm (see Section V-A). We
will see that FastKICA converges significantly faster thaadient descent in practice.

As an additional caveat to Corollary 1, there is in genergbraatical strategy to guarantee that our ICA
algorithm will be initialised within the neighbourhoadd( X *). Nevertheless, our experiments in Section
V demonstrate that FastKICA often converges to the globhltism even from arbitrary initialisation

points, and is much more reliable in this respect than sirgpelient descent.

B. Incomplete Cholesky Estimate of the Hessian

In the following, we present an explicit formulation of theessian, and derive its approximation using
an incomplete Cholesky decomposition of the kernel magri8ections I1V-C and IV-D provide implemen-
tations of the contrast and gradient, respectively, thatsesthe factors of the Cholesky decomposition.

First, we rewrite the pairwise HSIC terms (7) in a more comenmatrix form. LetkK; denote the
kernel matrix for thei-th estimated source, i.e., it%,1)-th entry is¢(7,,;) = é(z, Wy). We further
denote byM € R™*" the centring operation}/ = I — llnlfl, with 1,, being ann x 1 vector of ones.

Lemma 2 (HSC in terms of kernels [18]): An empirical estimate off S1C' for two estimated sources

Yi,yj IS
1
(n—1)?

This empirical estimate is biased, however the bias in teismate decreases agn, and thus drops

Hy(X) = tr(MK;MK;). (30)

faster than the variance (which decreases agn: see [18]).
The first and second derivatives of the Gaussian kernelifumgt in (6) are
(b/(a b) - _a)\_2b¢(G’a b)7
¢"(a,b) = 525 (a,b) — 3z 6(a,b).

Substituting the above terms into the approximate Hesdidfi @ x at0 € so(m), as computed in (20),

(31)

yields
H(Hopux)(0)(QQ) ~ Y wiAy, (32)
1<i<j<m
where
Aij = 5 (BiG + GiBj) + 3 (G — mimj) (33)
and

Bi = Ep 1[0 (Trii)]
Cz — Ek l[(b( )ykzylz] (34)
i = Erald e vitil-
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Here,yr: = e, yi. is thei-th entry of thek-th sample of the estimatés, selected by thé-th standard
basis vectoe; of R™.

We now outline how the incomplete Cholesky decompositidd] [&Ips to estimate the approximate

Hessian efficiently. An incomplete Cholesky decompositidrthe Gram matrixk; yields a low-rank
approximationk; ~ G;G, that greedily minimisesr(K; — G;G,"). The cost of computing the x d
matrix G; is O(nd?), with d < n. Greater values of result in a more accurate reconstructionfof.
As pointed out in [16, Appendix C], however, the spectrum dBi@m matrix based on the Gaussian
kernel generally decays rapidly, and a smalyields a very good approximation (the experiments in
[23] provide further empirical evidence). With approximabram matrices, the empirical estimates of
the three terms in Equation (34) become

A Lo T AT

A 1
G = m(y;—Gi)(y;—Gi)T>

~ 1
i = m((yi ) GG 1,),

wherey; is the sample vector for thih estimated source, and the entry-wise product of vectors.

C. Incomplete Cholesky Estimate of HSC

Lemma 2 states an estimate of the pairwise HSIC as the traagpaiduct of centred kernel matrices
MK;M, MK;M. Reusing the Cholesky decomposition from above, MeK;M = MGG/ M =:
GG, whereG; is n x d;, we arrive at an equivalent trace of a much smailex d; matrix for each
pair of estimated sourceg;, y;), and avoid any product ot x n matrices:

A= E i th (G.a7a,ar)

W - 2 (676 (6G))).

1<i<j<m

D. Incomplete Cholesky Estimate of the Gradient

We next provide an approximation of the gradient in terms @ same Cholesky approximation
K = GG''. Williams and Seeger [38] describe an approximatiokobased on an index sétof length

d with unique entries from{1,...,n}:

K~K':=K KK, (35)

&Q
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where K ; is the Gram matrix with the rows unchanged, and the columeser from the sef; and
K, ; is thed x d submatrix with both rows and columns restricted/toNVe adapt the approach of Fine
and Scheinberg [30] and choose the indi¢as accordance with an incomplete Cholesky decomposition
to minimisetr (K — K').

For simplicity of notation, we will restrict ourselves toetlgradient of HSIC for a paify;, y;) and
ignore the normalisation bgn —1)~2. The gradient oiﬁ(X) is merely the sum of all pairwise gradients.
Let K be the Gram matrix fog; and L for y;. With centring matricesk = MKM andL = MLM

the (unnormalised) differential of the pairwise HSIC is]23
dtr (R'L') =t (K'd(L)) + tr (L'd(K))
_ ! / T -1
= tr (K d(L )) ttr (L d(K:JKMKL:))
—tr (k’d(L’))
+ 2vec(l~}'K:7IKI_})Tvec(dK:J)
— vec(K; 1 K L'K. (K [)Tvec(dK; ;). (36)

Our expression forl(K’) is derived in Appendix B-A. The expansion @i, is analogous. The matrix
decompositions shrink the size of the factors in (36). Anrappate ordering of the matrix products
allows us to avoid ever generating or multiplying arx n matrix. In addition, note that for a column
of X,

vec(dK. 1) = dvec(K. 1) = <8vec(K;71)/axT) dvec(z).

The partial matrix derivativévec(K. ;)/0z " is defined in Appendix B-B and has siz@ x m, whereas
the derivative of the fullK hasn? x m entries. Likewise,dvec(K;)/0z" is only d?> x m. We
must also account for the rapid decay of the spectrum of Graatrices with Gaussian kernels [16,
discussion in Appendix C], since this can cause the invefsk ;g to be ill-conditioned. We therefore
add a small ridge ot0~% to K7 ;, although we emphasise that our algorithm is insensitivhitvalue.
We end this section with a brief note on the overall compaoreti cost of FastKICA. As discussed
in [23, Section 1.5], the gradient and Hessian are compaialiD (nm3d?) operations. A more detailed
breakdown of how we arrive at this cost may be found in [234rrg in mind that the Hessian has the

same cost as the gradient thanks to our diagonal approximati
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Fig. 2. Convergence measured by HSIC, by the Frobenius nébthredlifference between theth iterate X and X ®®), and

by the Amari error. FastKICA converges faster. The plotsashoerages over 25 runs with),000 samples from 16 sources.

V. NUMERICAL EXPERIMENTS

In our experiments, we demonstrate four main points: Fifsho alternative algorithm is used to
provide an initial estimate ofX, FastKICA is resistant to local minima, and often convergeshe
correct solution. This is by contrast with gradient descevitich is more often sidetracked to local
minima. In particular, if we choose sources incompatibléhvihe initialising algorithm (so that it fails
completely), our method can nonetheless find a good soldt&etond, when a good initial point is given,
the Newton-like algorithm converges faster than gradiexgcént. Third, our approach runs sufficiently
quickly on large-scale problems to be used either as a dtamlanethod (when a good initialisation is
impossible or unlikely), or to fine tune the solution obtaingy another method. While not the fastest
method tested, demixing performance of FastKICA achiewesgsonable compromise between speed and
solution quality, as demonstrated by its performance asli#parture of the mixture from independence
becomes non-smooth. Finally, FastKICA shows better @sist to outliers than alternative approaches.

Our artificial data for Sections V-A (comparison of FastKI@Ah gradient descent) and V-B (com-
putational cost benchmarks) were generated in accordaitbe[1¥, Table 3], which is similar to the
artificial benchmark data of [16]. Each source was chosedaiaty with replacement from 18 different
distributions having a wide variety of statistical propestand kurtoses. Sources were mixed using a
random matrix with condition number between one and twoti@ed/-C describes our experiments on
source smoothness vs performance, and Section V-D cordgaiexperiments on outlier resistance. We

used the Amari divergence, defined by [39], as an index of I@dréhm performance (we multiplied

"Note the criterion optimised by FastKICA is also the stitistf an independence test [10], [22]. This test can be agplie
directly to the values of HSIC between pairs of unmixed sesird¢o verify the recovered signals are truly independeat; n

separate hypothesis test is required.
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this quantity by 100 to make the performance figures moreatadla)l In all experiments, the precision
of the incomplete Cholesky decomposition widls ®». Convergence was measured by the difference in

HSIC values over consecutive iterations.

A. Comparison with Gradient Descent

We first compare the convergence of FastKICA with a simpleligr&t descent method [23]. In order to
find a suitable step width along the gradient mappe@¢o:), the latter uses a quadratic interpolation of
HSIC along the geodesic. This requires HSIC to be evaludtedeadditional points. Both FastKICA and
guadratic gradient descent (QGD) use the same gradientnalegeéndence measure. Figure 2 compares
the convergence for both methods (on the same data) of HB&CAmari error, and the Frobenius norm
of the difference between theth iterate X(V) and the solutionX ®?) reached after 30 iterations. The
results are averaged over 25 runs. In each 4000 observations from 16 artificial, randomly drawn
sources were generated and mixed. We initialised both rdetldth FastICA [2], and used a kernel
width of A = 0.5. As illustrated by the plots, FastKICA approaches the smuinuch faster than QGD.
We also observe that the number of iterations to convergeeceeases when the sample size grows. The
plot of the Frobenius norm suggests that convergence oKK2Atis only linear for the artificial data
set. While local quadratic convergence is guaranteed impdipellation setting, the required properties for
Corollary 1 do not hold exactly in the finite sample settindpiath can reduce the convergence rate [37].

For arbitrary initialisations, FastKICA is still applickbwith multiple restarts, although a larger kernel
width is more appropriate for the initial stages of the skdtocal fluctuations in FastKICA far from
independence are then smoothed out, although the bias Indhton of the global minimum increases).
We set)\ = 1.0 and a convergence threshold kif—® for both FastKICA and QGD. Fot0,000 samples
from 8 artificial sources, FastKICA converged on average3fét of the random restarts with an average
error (x 100) of0.54+0.01, whereas the QGD did not yield any useful results at all (mezaor x 100:
74.14+1.39). Here, averages are over 10 runs with 20 random initigtisateach. The solution obtained
with FastKICA can be refined further by shrinking the kernéditiv after initial convergence, to reduce

the bias.

B. Performance and Cost vs Other Approaches

Our next results compare the performance and computatmsl of FastKICA, Jade [4], KDICA
[8], MICA [31], MILCA [6], RADICAL [5], and quadratic gradiat descent (QGD) [23]. The timing
experiments for all methods except MILCA were performed toe $ame dual AMD Opteron (2x AMD
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Opteron(tm) Processor 250, 64KiB L1 cache, 1MiB L2 cach® System Memory). Since MILCA was
much slower, its tests were run in parallel on 64 bit clustetes with 2—16 processors and 7.8-94.6 GB
RAM, running Ubuntu 7.04: these nodes were generally fabtar the one used for the other algorithms,
and the runtime of MILCA is consequently an underestimatigtive to the remaining methods.

We demixed 8 sources ant),000 observations of the artificial data. The run times include th
initialisation by Jade for FastKICA, QGD, and KDICA, and aeeraged over 10 repetitions for each
data set (except for the slower methods RADICAL and MILCAB®was run for 10 iterations, and the
convergence threshold for FastKICA was > (A = 0.5). MICA was allowed a maximum number of 50
iterations, since with the default 10 iterations, the Aneardr was more than twice as high§4 +0.74),
and worse than that all other algorithms besides Jade.

Figure 3 displays the error and time for 24 data sets. We saedibmixing performance is very
similar across all nonparametric approaches, which parfoell on this benchmark. MICA has the best
median performance, albeit with two more severely miscayee solutions. While small, the median
performance difference is statistically significant adiog to a level0.05 sign test. FastkKICA and
QGD provide the next best result, and exhibit a small buissiedlly significant performance difference
compared with KDICA, RADICAL and Jade, but not MILCA. The &ndifferences between the various
algorithms are much larger than their performance diffeesnin this case, the ordering is Jade, KDICA,
MICA, FastKICA, QGD, RADICAL, and MILCA. The additional elaations of HSIC for the quadratic
approximation make QGD slower per iteration than FastKI8@#&shown above, FastKICA also converges
in fewer iterations than QGD, requiring32 iterations on average.

We also compared KDICA and FastKICA when random initializas were used. We see in Figure 5(a)
that FastKICA solutions have a clear bivariate distribotiavith a large number of initialisations reaching
an identical global minimum: indeed, the correct solutisrelearly distinguishable from local optima on
the basis of its HSIC value. By contrast, KDICA appears ta aBh much wider variety of local minima
even for these relatively simple data, as evidenced by thedorange of Amari errors in the estimated
unmixing matrices. Thus, in the absence of a good initiadiséstimate (where classical methods fail),
FastKICA is to be preferred. We will further investigate ogavergence behaviour of the different ICA

algorithms in the next section, for a more difficult (non-@itkg demixing problem.

C. ICA performance as a function of problem smoothness

While the foregoing experiments provide a good idea of cammmnal cost, they do not address the

performance of the various ICA methods as a function of th#ssical properties of the sources (rather,
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Error x100 Time [s]
= T Jade | 0.83+0.17 0.4640.002

. . KDICA| 0.47+0.12 5.0940.8

= E MICA | 0.37+0.28 8.10+3.4
= S . 1 . - o - | |FKICA| 0.40£0.10 91.27422.9
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MILCA| 0.44:£0.06 18.97 - 10%+5.1 - 10*
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Fig. 3. Comparison of run times (left) and performance (f@&yfbr various ICA algorithms. FastKICA is faster than MIAC
RADICAL, and gradient descent with quadratic approxim@tiand its results compare favorably to the other methoddCiAD
is even faster, but performs less well than FastKICA. Bothl®® and MICA have higher variance than FastKICA. The values

are averages over 24 data sets.

the performance is an average over sources with a broadyafibehaviours, and is very similar across
the various nonparametric approaches). In the presenbsegte focus specifically on how well the
ICA algorithms perform as a function of the smoothness of It& problem. Our source distributions
take the form of Gaussians with sinusoidal perturbationd, @e proportional tg(z)(1 + sin(27v(x)),
whereg(z) is a Gaussian probability density function with unit vadens is the maximum perturbing
frequency considered andis a scaling factor ranging fror.05 to 1.05 with spacing0.05 (the choice
of 5 will be addressed later). The sinusoidal perturbation idtiplied by ¢g(z) to ensure the resulting
density expression is everywhere non-negative. Plots efsthurce probability density function and its
characteristic function are given in Figure 4. Bearing imdnhthat purely Gaussian sources can only be
resolved up to rotation [1], the resulting ICA problem beesmmore difficult (for algorithms making
smoothness assumptions on the sources) as the departareGaoissianity is encoded at increasing
frequencies, which are harder to distinguish from randoisenfor a given sample siZeBy contrast, the
sources used in the previous section (taken from [17, Taplgi@d very similar demixing performance
when comparing across the nonparametric algorithms usesliinbenchmarks. One reason for this

similarity is that the departure from Gaussianity of theserses has substantial amplitude at low

8This perturbation to the Gaussian distribution differairthat used for designing contrast functions in classical §fudies,
which employ Edgeworth [1] or Gram-Charlier [39] expansioliVe shall see, however, that our perturbed sources arer bett
suited to characterizing the interaction between ICA penmce and the choice of kernel, for methods using kernesitjen

estimates (MICA, and KDICA) and for FastKICA.
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frequencies, resulting in ICA problems of similar diffiqulfor MICA, KDICA, and FastKICA? We
remark that linear mixtures where the departure from inddpace occurs only at high frequencies are
not typical of real-life ICA problems. That said, such mids represent an important failure mode of
ICA algorithms that make smoothness assumptions on thesalensities (as for MICA, KDICA, and
FastKICA). Thus, our purpose in this section is to compagedhcay in unmixing performance across
the various ICA algorithms as this failure mode is approdche

We decide on the base frequengyof the perturbation with reference to the parameters of MICA
to simplify the discussion of performance. The MICA algonit optimizes a sum of entropies of each
mixture component, where the entropies are computed usiegetised empirical estimates of the mixture
probability distributions. We can express the distributestimates by first convolving the mixture sample
by a B-spline kernel (of order 3, although other orders ase abssible) and then downsampling to get
probability estimates at the gridpoints. If we considerplo@ulation setting and perform these operations
in the frequency domain, this corresponds to multiplying Bourier transform of the source density by
that of the B-spline, and then aliasing the frequency coreptsithat exceed the grid Nyquist frequency.

Given a baseline bandwidthy, the grid spacing is computed as a function of the sample size
according tob, = by x 2.107683/n"2; without loss of generality, we séf = 1. The spline kernel
bandwidth is also scaled by this factor, such that the zerdss kernel spectrum occur at integer multiples
of f,, :=n%2/(2.107683). To use these factors in settiriy consider two sources consisting of perturbed
Gaussians with identical. The characteristic function of the two mixtures resultirgm a rotation with
anglen/4 has a distinctive peak at\/2 whenv = 1. Thus, by setting? = n%2/(2.107683+/2), this
peak will fall at the first minimum of the spline kernel speatr. An illustration is provided in Figure
4. Note in particular the decay of the spline spectrum towatsl first zero atf,,,: any component of
the mixture characteristic function at this frequency W# severely attenuated, and thus we expect that
demixing sources withv approaching 1 will be difficult (the sources will appear Gsas).

We sampled 25 data sets consisting of two sources with 1,000 for each value o, and mixed
the sources with orthonormal matrices. To ensure comparalults, we used the same set of 25 mixing
matrices across all. The algorithms were run for a maximum of 50 iterations. Thevergence threshold
for FastKICA was a0.5% change of HSIC, and the bandwidth= 0.5. MICA used a bandwidth of

bp = 1. For these bandwidth choices, we emphasise that both FKI@AMICA reached chance level

°As we shall see, the spacings-based entropy estimates ofl@Dand the graph-based mutual information estimates of
MILCA behave quite differently.
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Fig. 4. Left: Source probability density function for a perturbation r@gjuency0.7 .. /+/2, where f,,, is the frequency of the
first zero in the spectrum of the spline kernel used by MIGAddle: Characteristic function of the source, showing peaks at the
perturbation frequencyRight: Empirical (smoothed) characteristic function of the migtof two sources with angle/4. Two
peaks are seen at locatiofs f,,. The spectrum of the MICA kernel (a 3rd order B-spline) isesposed. The dashed vertical
lines are atf,,/2, which is the Nyquist frequency for the grid used by MICA. Bhyperturbations exceeding this frequency
will be aliased.

performance (i.e. complete failure) at the same sourcaugiény frequency, corresponding o= 1,
making the behaviour of these two methods across/thenge directly comparable. In other words, we

report therelative performance of the two algorithms over the fregqerange for which they operate at

better than chance level. The Amari errors in Figure 5(b)aarages over 10 random initialisations and
the 25 data sets for each frequency. Each algorithm waaliséd with the same 10 random orthonormal
matrices.

We note first of all that FastKICA has a longer interval in which the average Amari error is
very low, compared with MICA and KDICA. In addition, as rises above 0.5, the average error of
FastKICA is consistently below that of MICA and KDICA. On tle¢her hand, for the lowest perturbing
frequencies, KDICA and MICA perform better than FastKICAheTtwo most computationally costly
methods, RADICAL and MILCA, perform best, with a low Amarivergence over all the high values
tested. This is as expected, for two reasons: first, bothaedstperform an exhaustive search over all pairs
of Jacobi angles, and are not susceptible to local minimaoi®k RADICAL is based on a spacings
estimate of entropy, and MILCA on A-nn estimate of the mutual information: in other words, both
methods adapt automatically to the scale of the variationthé mixture densities. That said, efficient
optimization techniques have yet to be developed for RADUGHAd MILCA.

We next examine in more detail the convergence behaviodirigdo the drop in average performance
of FastKICA, MICA, and KDICA asv rises. First, as noted in the previous section, KDICA can be

sensitive to local minima: thus its average performanceatias even for low values ofas a large number
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of initialisations result in misconvergence. The behaviolMICA is more complex, with performance
dropping atr ~ 0.4 but recovering forr ~ 0.55 (two more such oscillations occur at highe). At

v =~ 0.4, the MICA entropy score develops a local minimum at a rotetdr /4 from the true unmixing
matrix, resulting in a substantial number of initializattoconverging to this incorrect solution, as well
as a group of correct solutions (this local minimum is alsenséor otherb, values, but at different
onset values of). The local minimum becomes less pronounced at 0.55, but then strengthens again
at v ~ 0.65. By contrast, the results for FastKICA at moderate valuew ohore closely follow the
histogram of Figure 5(a), with a large fraction of soluticsisthe global optimum, and the remaining
misconverged solutions having a range of Amari errors.rigkie best solution over all 10 initializations
(as measured by the HSIC or entropy score), rather than #@ge solution, the results of MICA and
FastKICA at largerv both remain indistinguishable from RADICAL and MILCA until ~ 0.8. For

v > 0.8, performance worsens towards chance levet a@ses to 1, at which point the global optimum of
both contrast functions occurs at a random angle. The ofgigisgperformance drop can be increased for
both FastKICA and MICA by decreasirtg or A, respectively; but at a cost of worse mean performance
due to more pronounced local minima. On the other hand, teeKi2ICA result continues to perform as
well as RADICAL and MILCA, since the slow decaying Fourieartisform of its Laplace kernel makes

it sensitive to higher frequencies.

- 50 0
120 Il <DICA ——FKICA —FKICA o
[ JFastkICA 45 - - MICA - - MICA \
i
100 40 -~ ~KDICA B 25| -~ —kpica

—— MILCA| oo —— MILCA|
, ,

80 - - RAD 20| - - RAD

60

Frequency
100 x Amari error
[N
a
- \
/
100 x Amari error

40

20

5
I thhhhhﬂﬂn [
10 20 30 0.2 0.4 0.6 0.8 1 5 10 15 20 25

100x Amari Error v number of outliers

oo

(a) Misconvergence (b) Performance vs. smoothness (c) Outlier results

Fig. 5. (a) Comparison of performance for arbitrary inigations ¢ = 40,000, m = 8). Amari error histograms are shown for
FastKICA vs. KDICA with mixed artificial sources (10 data se20 initialisations each). FastKICA reaches a global mimn
far more often than KDICA. (b) Amari error depending on theesfrequencies forn = 1000 samples and two sources. (c)
Effect of outliers on the performance of the ICA algorithrfsy, two sources of lengtih = 1000, drawn independently with
replacement from [17, Table 3], and corrupted at randomrehtens with outliers att5 (where each sign has probabilidy5).

Each point represents an average oied independent experiments. The number of corrupted obsengain both signals is
given on the horizontal axis.
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D. Resistance to Outliers

In our final experiment, we investigate the effect of outtieise added to the observations. We selected
two generating distributions from the benchmark data in [lable 3], randomly and with replacement.
After combining these signals with a randomly generatedimatith condition number between 1 and
2, we generated a varying number of outliers by addirig(with equal probability) to both signals at
random locations. We evaluated HSIC using a Gaussian kefisete A = 0.5. For FastKICA and MICA,
we chose the best result out of 3 random initialisationspating to HSIC or the estimated entropy,
respectively. The initialisation for KDICA was the FastkAQesult, since the KDICA is sensitive to
poor initialisation (as seen in Section V-B). Results arevahin Figure 5(c). It is clear that FastKICA

substantially outperforms the alternatives in outlieristesice.

VI. CONCLUSION

We demonstrate that an approximate Newton-like methodKFa4, can improve the speed and per-
formance of kernel/characteristic function-based ICAhnes. We emphasise that FastKICA is applicable
even if no good initialisation is at hand. With a modest nuntdfeestarts and a kernel width that shrinks
near independence (on our data, from= 1.0 to A = 0.5), the correct global optimum is consistently
found. A good initialisation results in more rapid converge, and we do not need to adapt the kernel size.
Our method demonstrates much better outlier resistancertgently published competing approaches.
Moreover, our optimization method can be applied to any évdiferentiable RKHS kernel, rather than
relying on the specific properties of particular kernelsl{goLaplace in the case of [8], or to be a spline
kernel with compact support in [31]).

Several directions for future work are suggested by theemtestudy. First, the kernel bandwidth used
is currently chosen heuristically. It would be of interesdievelop more principled methods for choosing
this bandwidth based on properties of the data. Secondnitible that ICA methods based on spacings
estimates of entropy, or nearest-neighbour estimates afahinformation, perform very well for ICA
problems where the departure from independence is encadeghafrequencies. Unfortunately, efficient

optimization techniques have yet to be developed for ICAgishese dependence measures.

APPENDIX A

EVALUATION OF THE SECOND DERIVATIVE OF
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THE HSIC BASED ICA CONTRAST

We assume the unmixing matrix is correct, and tis= X*. The term (15a) for a fixed paif, j)
can be computed as
Eg, {(b” (Bhi) w; BriSpwicd (gklj)]
m (37)
= Z wirwit Bt [¢" (Skii) SkirSkied (Suij)] -

rit=1;rt#1
Under the assumptions of independence and whitened msxttive corresponding-, t) expression can

be written
0, r #t;

2B, [¢" (Skii) ¢ (ki) 5 r=t+4i,7; (38)
Ep (0" (3k1i)|Ex |:§ilj¢(§klj)} , r=t=1j.

Thus the term (15a) can be further simplified as
(15a) Exy [¢” (Skii) w;- gklgglwz‘@(gklj)}
= > 2w B¢ (ki) Eklé (5kiy)] (39)
r=1;r#1i,j
+ ngEk,l[cb" (Skii) | Ex [Ezquﬁ (Skiy)] -
By applying the same techniques, the remaining terms (156ij}-become

(15b): Ex, {Qy (Ski) wy ngléb(gklj)}

m ) L - (40)
= Z —wiBry [0 (Skii) Skii] B (@ (Saij)]

r=1;r#i

(15c): Ex {Qﬁ/ (Ekzi)wiT gklggleqﬁ’ (gklj)]

(41)
= — wiiBry [¢ Suii) ki) Brg [0 Skij) Swas]
(15d): Ex [(b" (Bhi) wi Ekﬁllwi} Ex1 [0 (Ski5)]
" (42)
= Z 2w} By [0 (Siii)] By [0 Say)]
r=1;r#£i
(15e) Ey, [cb' (Bri) wi ngz} Ex (¢ (Bri)]
i (43)
= Z ~w2Bry [ Grii) ki) Ert [0 (Brag)]
r=1;r#i
(15f): Ey, [¢'(§kli) wy 51@1] Ex, [¢'(§kzj) ijEkz} =0, (44)
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(159): Ex [El {Qw (Skii) wi gklgzl—lwi] E; [¢ (gklj)]]
= > 2w E [0 Bkis)] Ena [6 (Srij)] (45)
r=1;r#i,j
+ Wi B [0 (Suii) | B [Ba [535] Ba [6(Saty)]]
(15h): Ey, [El [@5/ (Skii) w; ngl} E; [¢ (gklj)]}
m (46)
= Z —wp By [0 Srai) Sris) By [0 (5]

r=Lirsi
(150): Ey [Ez [¢/(§kli) wiT?kz} E [¢/(§klj) w]TFle

= —w; ;B [Ba Skt B [ ¢'(5k1s) | | Ee [ [Sais [ Ba [¢(515)] ] -
Substituting (39)—(47) into equation (15), the result inaipn (16) follows directly fromov;; = —wj;.

(47)

APPENDIX B

DERIVATION OF THE APPROXIMATE GRADIENT AND THE MATRIX PARTIAL DERIVATIVES

In this appendix, we first derive the differentiék’ of the Cholesky approximation to the Gram matrix
K, and use it to obtain the differential of the approximate €181 (36). We then give an expression for
the differential of the factors of”, which involves the entry-wise derivative of the Gram matsiith

respect to a column of X. Details have been published in [23].

A. Differential of the incomplete Cholesky approximation to HSC

Recall that the differential of the low-rank approximatimHSIC is
dtr (k’i’) — tr (f?’d(L’)) ttr (Z’d(K’)) . (48)

We expand the differential of’ = K:JKE}KL: by the product rule and by rewriting(K;}) =
K;}(dK;,)K] . Plugging the result into the second tetm(f’d(K’)) from (48) yields

tr (Z’d(K'))
= tr (E’dK:, ,K;,}K,,:) +tr (E’K:7 IKI‘,}dKL:) (49)

—tr (DK, K} (AR KK
Using the symmetry of the Gram matrices, the second term @might hand side can be transformed as
tr (E’K:7 IKE}dKL:) — tr ((dm IKI_’}KI,:)TE’T)

— tr (Z’dm IKI"}KIJ ,
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and (49) becomes
tr (Z’d(K’)) =2t (K;}KI,:Z’dm 1) —tr (K;}K,,:E’m (K7 1K, 1)
= 2Vec(z’K:’IKI_’Il)Tvec(dK:J)
- vec(KI_}KL:E’K:JKI_})TveC(dKLI).

The other termtr (f{’d(L’)) in (48) is equivalent.

B. Derivative of the Gram matrix with respect to X

The derivative of the Gram matrix entries with respect to digalar columnz of the unmixing matrix
X depends on the kernel. We employ a Gaussian kernel herenbutauld easily obtain the derivatives
of additional kernels: these can then be plugged straigh#fially into the equations in the previous
section.

Lemma 3 (Derivative of K with respect to X): Let K be the Gram matrix computed with a Gaussian

kernel, and letr be anm x 1 column of the unmixing matrix, such that thi& j)th entry of K is

whereW;; = (w; — w;)(w; —w;)", andw; is theith sample of observations. Then the derivative of any

k;; with respect tar is
Oki; kij
ot = —)\—gfﬂT(wi —wj)(wi —wj) "

Since the above derivative is a vector, we require apprpriatation to express the derivative of

the entire Gram matrix in a tractable form. This is done ushmgvec(A) operation, which stacks the
columns of the matrixA on top of each other. Thus, the resulting differential is

Ok11 Okn1 Okia Oknn | "
92 Br ) 0 B d(vec ), (50)

Ovec(K) /02
whered(vec z) = dr anddky; /0z = (0k11/0x")T. The derivatives of the submatric8sec(K. ;)/0x"

andovec(K; ;)/0z" are submatrices afvec(K)/9z ", restricted to the row8k;; /0x ", with 1 <i <n

d(vecK) =

andj € I, or bothi, j € I, respectively.
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