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Abstract

Recent approaches to Independent Component Analysis (ICA)have used kernel independence mea-

sures to obtain highly accurate solutions, particularly where classical methods experience difficulty (for

instance, sources with near-zero kurtosis). FastKICA (Fast HSIC-based Kernel ICA) is a new optimisation

method for one such kernel independence measure, the Hilbert-Schmidt Independence Criterion (HSIC).

The high computational efficiency of this approach is achieved by combining geometric optimisation

techniques, specifically an approximate Newton-like method on the orthogonal group, with accurate

estimates of the gradient and Hessian based on an incompleteCholesky decomposition. In contrast to

other efficient kernel-based ICA algorithms, FastKICA is applicable to any twice differentiable kernel

function. Experimental results for problems with large numbers of sources and observations indicate that

FastKICA provides more accurate solutions at a given cost than gradient descent on HSIC. Comparing

with other recently published ICA methods, FastKICA is competitive in terms of accuracy, relatively

insensitive to local minima when initialised far from independence, and more robust towards outliers.

An analysis of the local convergence properties of FastKICAis provided.

Index Terms

Independent component analysis, Hilbert-Schmidt independence criterion, kernel methods, approxi-

mate Newton-like methods, the orthogonal group.
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I. INTRODUCTION

The problem of Independent Component Analysis (ICA) involves the recovery of linearly mixed,

statistically independent sources, in the absence of information about the source distributions beyond

their mutual independence [1], [2]. The performance of ICA algorithms thus depends on the choice of

the contrast function measuring the degree of statistical independence of the recovered signals, and on

the optimisation technique used to obtain the estimated mixing coefficients.

Classical approaches, also referred to as parametric ICA approaches, construct their independence

criteria according to certain hypothetical properties of the probability distributions, either by an explicit

parametric model of these distributions via maximum likelihood [3], or by maximising certain statistics of

the unmixed sources (often measures of non-Gaussianity, such as the kurtosis) [2], [4]. These approaches

can therefore be less powerful than methods which explicitly model the source distributions, and can

even fail completely when the modelling assumptions are notsatisfied (e.g. a kurtosis-based contrast will

not work for sources with zero kurtosis).

More recently, several approaches to ICA have been proposedthat directly optimise nonparametric

independence criteria. One option is to minimise the mutualinformation between the sources, as in [5]–

[8]. Another approach is to use a characteristic function-based measure of mutual independence due to

Kankainen [9] based on the pairwise criterion of Feuerverger [10], which was applied to ICA in [11],

[12], and to ICA with post-nonlinear mixing in [13], [14].

Finally, a variety of kernel independence criteria have been employed in ICA. These criteria measure

dependence using the spectrum of a covariance operator between mappings of the variables to high

dimensional feature spaces, specifically reproducing kernel Hilbert spaces (RKHSs) [15]. The various

kernel independence criteria differ in the way they summarise the covariance operator spectrum, and in

the normalisation they use. They include the kernel canonical correlation [16], the kernel generalised

variance [16], the spectral norm of the covariance operator(COCO) [17], the kernel mutual information

[17], and the Hilbert-Schmidt Independence Criterion (HSIC) [18]. A biased empirical estimate of the

HSIC statistic is in fact identical (as a function of its kernel argument) to the characteristic function-based

criterion of [10], which is in turn identical to theℓ2 distance between Parzen window estimates of the

joint density and the product of the marginals: see Rosenblatt [19]. When a Gaussian kernel is used

and the sample size is fixed, the three statistics correspondexactly. As pointed out elsewhere [9], [10],

however, the characteristic function-based statistic is more general than Rosenblatt’s, since it admits a

wider range of kernels while remaining an independence measure (a further difference is that the kernel
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bandwidth may remain fixed for increasing sample size). Likewise, there exist universal kernels (in the

sense of [20]: that is, kernels for which HSIC is zero iff the variables are independent, forany probability

distribution [17, Theorem 6]) which have no equivalence with the characteristic function-based criterion

of [9], [10]: examples are given in [20, Section 3] and [21, Section 3].1 Thus, the RKHS criterion is

a more general dependence measure than the characteristic function criterion, which is in turn more

general than theℓ2 distance between Parzen window density estimates. Since the HSIC-based algorithm

performs as well as or better than the remaining kernel dependence criteria for large sample sizes [18]

on the benchmark data of [16], we use it as the contrast function in our present algorithm.

While the above studies report excellent demixing accuracy, efficient optimisation of these dependence

measures for ICA remains an ongoing problem,2 and a barrier to using nonparametric methods when the

number of sources,m, is large. The main focus of the present work is thus on more efficient optimisation

of kernel dependence measures. ICA is generally decomposedinto two sub-problems [1], [12]: signal

decorrelation or whitening, which is straightforward and is not discussed further, and optimisation over

the set of orthogonal matrices (the orthogonal group,O(m)), which is a differentiable manifold, and for

which the bulk of the computation is required. The approach of [12], [16]–[18] is to perform gradient

descent onO(m) in accordance with [24], choosing the step width by a Golden search. This is inefficient

on two counts: gradient descent can require a very large number of steps for convergence even on relatively

benign cost functions, and the Golden search requires many costly evaluations of the dependence measure.

Although [23] propose a cheaper local quadratic approximation to choose the step size, this does not

address the question of better search direction choice. An alternative solution is to use a Jacobi-type

method [5], [6], [11], where the original optimisation problem onO(m) is decomposed into a sequence

of one-dimensional sub-problems over a set of pre-determined curves, parameterised by the Jacobi angles.

While the theoretical convergence properties of a Jacobi approach as compared with direct optimisation

on O(m) are beyond the scope of this work, we perform an empirical evaluation against algorithms

employing optimisation over Jacobi angles in our experiments.

In the present study, we develop an approximate Newton-likemethod for optimising the HSIC-based

ICA contrast overO(m), namely Fast HSIC-based Kernel ICA (FastKICA). A key feature of our

approach is its computational efficiency, due to both the Newton-like optimisation and accurate low

1The RKHS approach also allows dependence testing on more general structures such as strings and graphs [22].

2Most of the effort in increasing efficiency has gone into cheaply and accurately approximating the independence measures

[8], [12], [16], [23].

April 9, 2009 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. X, APRIL9, 2009 4

rank approximations of the independence measure and its derivatives. Importantly, these techniques

do not require particular mathematical properties of the kernel (e.g. compact support, or that it be

Laplace), but can be applied directly for any twice differentiable kernel function. The optimisation strategy

follows recent studies on Newton-like methods for numerical optimisation on smooth manifolds in [25].

Approximate Newton-like algorithms have previously been developed in the case of classical ICA contrast

functions [26], [27], where the authors use the diagonal structure of the Hessian at independence to greatly

reduce complexity and computational cost. These earlier methods share the significant property of local

quadratic convergence to a solution with correct source separation. We show the HSIC-based ICA contrast

likewise has a diagonal Hessian at independence (this analysis originally appeared in [28]; note also that

the diagonal property doesnot hold for the multivariate characteristic function-based counterpart [9] to

the HSIC-based contrast), and that FastKICA is locally quadratically convergent to a correct unmixing

matrix. Moreover, our experiments suggest that in the absence of a good initialisation, FastKICA converges

more often to a correct solution than gradient descent methods. Previous kernel algorithms require either

a large number of restarts or a good initial guess [12], [16],[17]. The current work is built on an earlier

presentation by the authors in [29]. Compared with [29], thepresent study contains proofs of the main

theorems (which were omitted in [29] due to space constraints); a proof of local quadratic convergence in

the neighbourhood of the global solution; additional experiments on ICA performance vs “smoothness”

of the departure from independence; and experiments on outlier resistance, for which our method strongly

outperforms the other tested approaches.

The paper is organised as follows. In Section II, we briefly introduce the instantaneous noise-free

ICA model, the HSIC-based ICA contrast, and a Newton-like method onO(m). In Section III, we

analyse the critical point condition and the structure of the Hessian of this contrast. We describe our

ICA method, FastKICA, in Section IV, and prove local quadratic convergence. We also present an

efficient implementation of FastKICA, based on the incomplete Cholesky decomposition [30]. Finally,

our experiments in Section V compare FastKICA with several competing nonparametric approaches:

RADICAL [5], MILCA [6], mutual information-based ICA (MICA) [31], and KDICA [8]. Experiments

address performance and runtimes on large-scale problems,performance for decreasing smoothness of

the departure of the mixture from independence (which makesdemixing more difficult for algorithms that

assume smooth source densities), and outlier resistance. Matlab code for FastKICA may be downloaded

at www.kyb.mpg.de/bs/people/arthur/fastkica.htm
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II. PRELIMINARIES: ICA, HSIC AND NEWTON-LIKE METHOD ONO(m)

A. Linear Independent Component Analysis

The instantaneous noise-free ICA model takes the form

Z = AS, (1)

whereS ∈ R
m×n is a matrix containingn observations ofm sources,A ∈ R

m×m is the mixing matrix

(assumed here to have full rank),3 andZ ∈ R
m×n contains the observed mixtures. Denote ass and z

single columns of the matricesS andZ, respectively, and letsi be thei-th source ins. ICA is based on

the assumption that the componentssi of s, for all i = 1 . . . m, are mutually statistically independent.

This ICA model (1) is referred to asinstantaneous as a way of describing the dual assumptions that the

observation vectorz depends only on the source vectors at that instant, and the source sampless are

drawn independently and identically fromPrs. As a consequence of the first assumption, the mixture

samplesz are likewise drawn independently and identically fromPrz.

The task of ICA is to recover the independent sources via an estimateB of the inverse of the mixing

matrix A, such that the recovered signalsY = BAS have mutually independent components. It is

well known that if at most one of the sourcess is Gaussian, the mixing matrixA can be identified

up to an ordering and scaling of the recovered sources [1]. This means the unmixing matrixB is the

inverse ofA up to anm ×m permutation matrixP and anm ×m diagonal (scaling) matrixD, i.e.,

B = PDA−1. To reduce the computational complexity the mixturesZ are usually pre-whitened via

principal component analysis (PCA) [1], [12]. Whitening corresponds to finding a matrixV ∈ R
m×m

such thatW = V Z = V AS ∈ R
m×n with E[ww⊤] = I, whereW are referred to as the whitened

observations. While this pre-whitening step is less statistically efficient than solving directly for the

unconstrained mixing matrix [4, Section VI.B], the optimisation problem in the pre-whitened case is

easier. Assuming the sourcessi have zero mean and unit variance, we findV A ∈ R
m×m to be orthogonal.

Therefore, the whitened noise-free ICA unmixing model becomes

Y = X⊤W, (2)

whereX ∈ R
m×m is an orthogonal unmixing matrix (i.e.,X⊤X = I), andY ∈ R

m×n contains our

estimates of the sources. LetO(m) denote the orthogonal group:

O(m) := {X ∈ R
m×m|X⊤X = I}. (3)

3In other words, we do not address the more difficult problems of undercomplete or overcomplete ICA (corresponding to

more mixtures than sources, or fewer mixtures than sources,respectively).
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We focus in the remainder of this work on the problem of findingX ∈ O(m) so as to recover the

mutually statistically independent sources via the model (2). Thus, we next describe our measure of

independence.

B. The Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt Independence Criterion (HSIC) is a bivariate independence measure obtained as

the squared Hilbert-Schmidt (HS) norm of the covariance operator between mappings to RKHSs [18],

and generalises the characteristic function-based criterion originally proposed by Feuerverger [10]. The

Hilbert spaceF of functions from a compact subsetU ⊂ R to R is an RKHS if at eachu ∈ U , the point

evaluation operatorδu : F → R, which mapsf ∈ F to f(u) ∈ R, is a continuous linear functional.

To each pointu ∈ U , there corresponds an elementαu ∈ F , also called thefeaturemap, such that

〈αu, αu′〉F = ψ(u, u′), whereψ : U×U → R is a unique positive definite kernel. We also define a second

RKHS G with respect toU , with feature mapβv ∈ G and corresponding kernel〈βv , βv′〉G = ψ̂(v, v′).

Let Pru,v be a joint measure on(U × U ,Γ × Λ) (hereΓ and Λ are Borelσ-algebras onU), with

associated marginal measuresPru andPrv. The covariance operatorCuv : G → F is defined as

〈f,Cuv(g)〉F = E[f(u)g(v)] − E[f(u)]E[g(v)] (4)

for all f ∈ F and g ∈ G. The squared HS norm of the covariance operatorCuv, denoted as HSIC, is

then

‖Cuv‖2
HS = Eu,u′,v,v′

[
ψ

(
u, u′

)
ψ̂

(
v, v′

)]
(5a)

+ Eu,u′

[
ψ

(
u, u′

)]
Ev,v′

[
ψ̂

(
v, v′

)]
(5b)

− 2Eu,v

[
Eu′

[
ψ

(
u, u′

)]
Ev′

[
ψ̂

(
v, v′

)]]
(5c)

(see [18] for details), where(u, v) ∼ Pru,v and(u′, v′) ∼ Pru,v are independent random variables drawn

from the same distribution, andE[·] denotes the expectation over the corresponding random variables.

As long as the kernelsψ(u, ·) ∈ F and ψ̂(u, ·) ∈ G are universal in the sense of [20], e.g., the Gaussian

and Laplace kernels,‖Cuv‖2
HS = 0 if and only if u andv are statistically independent [18, Theorem 4].

In this work, we confine ourselves to a Gaussian kernel, and use the same kernel for bothF andG,

ψ(a, b) = ψ̂(a, b) := φ(a− b) = exp
(
− (a−b)2

2λ2

)
. (6)

As discussed in the introduction, the empirical expressionfor HSIC in [18] is identical to Feuerverger’s

independence criterion [10] and Rosenblatt’sℓ2 independence statistic [19] for a Gaussian kernel at a

given sample size.
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We now construct an HSIC-based ICA contrast for more than tworandom variables. In the ICA model

(1), the componentssi of the sourcess are mutually statistically independent if and only if theirprobability

distribution factorises asPrs =
∏m

i=1 Prsi
. Although the random variables are pairwise independent if

they are mutually independent, where pairwise independence is defined asPrsi
Prsj

= Prsi,sj
for all

i 6= j, the reverse does not generally hold: pairwise independence does not imply mutual independence.

Nevertheless, Theorem 11 of [1] shows that in the ICA setting, unmixed components can be uniquely

identified using only the pairwise independence between components of the recovered sourcesY , since

pairwise independence between components ofY in this case implies their mutual independence (and

thus recovery of the sourcesS).4 Hence, by summing all unique pairwise HSIC measures, an HSIC-based

contrast function over the estimated signalsY ∈ R
m×n is defined as

H : O(m) → R,

H(X) :=

m∑

1≤i<j≤m

Ek,l

[
φ

(
x⊤i wkl

)
φ

(
x⊤j wkl

)]
(7a)

+ Ek,l

[
φ

(
x⊤i wkl

)]
Ek,l

[
φ

(
x⊤j wkl

)]
(7b)

− 2Ek

[
El

[
φ
(
x⊤i wkl

)]
El

[
φ
(
x⊤j wkl

)]]
, (7c)

whereX := [x1, . . . , xm] ∈ O(m), wkl = wk − wl ∈ R
m denotes the difference betweenk-th and l-th

samples of the whitened observations, andEk,l[·] represents the empirical expectation over allk and l.

C. Newton-like Methods on O(m)

In this section, we briefly review some basic concepts regarding Newton-like methods on the orthogonal

groupO(m). We refer to [32], [33] for an excellent introduction to differential geometry, and to [34] for

an introduction to optimisation algorithms on differentiable manifolds. We will review both the classical

approach to Newton-type optimization on smooth manifolds [24], and then describe a more recently

developed Newton-like method [25], which we apply onO(m).

We consider the orthogonal groupO(m) as anm(m− 1)/2 dimensional embedded submanifold of

R
m×m, and denote the set of allm×m skew-symmetric matrices byso(m) := {Ω ∈ R

m×m|Ω = −Ω⊤}.

Note thatso(m) is isomorphic toRm(m−1)/2, written so(m) ∼= R
m(m−1)/2. The tangent spaceTXO(m)

4That said, in the finite sample setting, the statistical performance obtained by optimizing over a pairwise independence

criterion might differ from that of a mutual independence criterion.
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R
p

Xk
p

Xk+1

O(m)

Ω

µ−1
Xk

µXk

R
m(m−1)/2

∼= so(m)

0 -

6

p

Z
Z~

z

y

Fig. 1. Illustration of a Newton-like method onO(m).

of O(m) at pointX ∈ O(m) is given by

TXO(m) :=
{

Ξ ∈ R
m×m

∣∣Ξ = XΩ, Ω ∈ so(m)
}
. (8)

A typical approach in developing a Newton-type method for optimising a smooth functionH : O(m) → R

is to endow the manifoldO(m) with a Riemannian structure: see [24]. Rather than moving along a straight

line as in the Euclidean case, a Riemannian Newton iterationmoves along a geodesic5 in O(m). For a

given tangent space directionΞ = XΩ ∈ TXO(m), the geodesicγX throughX ∈ O(m) with respect to

the Riemannian metric〈XΩ1,XΩ2〉 := − tr Ω1Ω2, for XΩ1,XΩ2 ∈ TXO(m), is

γX : R → O(m), ε 7→ X exp (εX⊤Ξ), (9)

with γX(0) = X and γ̇X(0) = Ξ. Here,exp(·) denotes matrix exponentiation. It is well known that this

method enjoys the significant property of local quadratic convergence.

More recently, a novel Newton-like method on smooth manifolds was proposed [25]. This method has

lower complexity than the classical approach, but retains the property of local quadratic convergence. We

adapt the general formulation from [25] to the present setting, the orthogonal groupO(m).

For every pointX ∈ O(m), there exists a smooth map

µX : R
m(m−1)/2 → O(m), µX(0) = X, (10)

which is a local diffeomorphism around0 ∈ R
m(m−1)/2, i.e., both the mapµX and its inverse are

locally smooth around0. LetX∗ ∈ O(m) be a nondegenerate critical point of a smooth contrast function

5The geodesic is a concept on manifolds analogous to the straight line in a Euclidean space . It allows parallel transportation

of tangent vectors on manifolds.
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H : O(m) → R. If there exists an open neighborhoodU(X∗) ⊂ O(m) of X∗ ∈ O(m) and a smooth

map

µ̃ : U(X∗) × R
m(m−1)/2 → O(m), (11)

such thatµ̃(X,Ω) = µX(Ω) for all X ∈ U(X∗) andΩ ∈ R
m(m−1)/2, we call {µX}X∈U(X∗) a locally

smooth family of parametrisations aroundX∗.

Let Xk ∈ O(m) be thek-th iteration point of a Newton-like method for minimising the contrast

functionH. A local cost function can then be constructed by composing the original functionH with

the local parametrisationµXk
aroundXk, i.e.,H ◦ µXk

: R
m(m−1)/2 → R, which is a smooth function

locally defined on the Euclidean spaceR
m(m−1)/2. Thus, one Euclidean Newton stepΩ ∈ R

m(m−1)/2

for H, expressed in local coordinates, is the solution of the linear equation

H(H ◦ µXk
)(0)Ω = −∇(H ◦ µXk

)(0), (12)

where∇(H ◦ µXk
)(0) and H(H ◦ µXk

)(0) are respectively the gradient and Hessian ofH ◦ µXk
at

0 ∈ R
m(m−1)/2 with respect to the standard Euclidean inner product on the parameter spaceRm(m−1)/2.

Finally, projecting the Newton stepΩ in the local coordinates back toO(m) using the local parametri-

sation6 µXk
completes a basic iteration of a Newton-like method onO(m) (see Fig. 1 for an illustration

of the method).

We now describe our choice of local parametrisationµX of O(m), which follows directly from the

geodesic expression (9). We defineΩ = (ωij)
m
i,j=1 ∈ so(m) as before and letΩ = (ωij)1≤i<j≤m ∈

R
m(m−1)/2 in a lexicographical order. A local parametrisation ofO(m) around a pointX ∈ O(m) is

given by

µX : R
m(m−1)/2∼= so(m)→O(m), Ω 7→X exp(Ω), (13)

which is a local diffeomorphism around0 ∈ R
m(m−1)/2, i.e. µX(0) = X.

To summarise, a Newton-like method for minimising the contrast functionH : O(m) → R can be

stated as follows:

6In the general setting, the second parametrisation can be from a different family to the first: see [25] for details. This is not

the case for our algorithm, however.
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Newton-like method onO(m)

Step 1: Given an initial guessX0 ∈ O(m) and setk = 0.

Step 2: CalculateH ◦ µXk
: R

m(m−1)/2 ∼= so(m) → R.

Step 3: Compute the Euclidean Newton step, i.e., solve

the linear system forΩ ∈ R
m(m−1)/2,

H(H ◦ µXk
)(0)Ω = −∇(H ◦ µXk

)(0).

Step 4: SetXk+1 = νXk

(
Ω

)
.

Step 5: If‖Xk+1 −Xk‖F is small enough, stop.

Otherwise, setk = k + 1 and go to Step 2.

Here,‖·‖F is the Frobenius norm of matrices. According to Theorem 1 in [25], this Newton-like method

is locally quadratically convergent toX∗ ∈ O(m). For an approximate Newton-like method onO(m), we

replace the true HessianH(H ◦µX)(0) by an approximate HessiañH(H ◦µX)(0) which is more efficient

to compute. We will prove that local quadratic convergence is still obtained with this approximation.

III. T HE HSIC-BASED ICA CONTRAST AT INDEPENDENCE

In this section we examine the critical points of the HSIC-based ICA contrast at independence. It

turns out that any correct unmixing matrix which is a global minimum of the HSIC-based contrast is a

nondegenerate critical point.

Let X = [x1, . . . , xm] ∈ O(m). By the chain rule, the first derivative ofH in the directionΞ =

[ξ1, . . . , ξm] ∈ TXO(m) is

DH(X)Ξ = d
d ε(H ◦ γX)(ε)

∣∣
ε=0

=

m∑

i,j=1;i6=j

Ek,l

[
φ′

(
x⊤i wkl

)
ξ⊤i wklφ

(
x⊤j wkl

)]
(14a)

+ Ek,l

[
φ′

(
x⊤i wkl

)
ξ⊤i wkl

]
Ek,l

[
φ

(
x⊤j wkl

)]
(14b)

− 2Ek

[
El

[
φ′

(
x⊤i wkl

)
ξ⊤i wkl

]
El

[
φ

(
x⊤j wkl

)]]
. (14c)

Setting the above derivative to zero, we can characterise the critical points of the HSIC-based ICA

contrast function defined in (7). Obviously, the critical point condition depends not only on the statistical

characteristics of the sources, but also on the properties of the kernel function. It is hard to characterise
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all critical points of HSIC in full generality: thus, we dealonly with those critical points that occur at

the ICA solution.

Lemma 1: LetX∗ ∈ O(m) be a correct unmixing matrix of the model (2). ThenX∗ is a nondegenerate

critical point of the HSIC-based ICA contrast (7), i.e.,DH(X∗)Ξ = 0 for arbitraryΞ ∈ TX∗O(m).

Proof: We recall that‖Cuv‖2
HS ≥ 0 and ‖Cuv‖2

HS = 0 if and only if Pru,v = Pru Prv. In other

words,X∗ ∈ O(m) is a global minimum of the HSIC-based contrast function. Theorem 4 in [18] shows

that any small displacement ofX∗ ∈ O(m) along the geodesics will result in an increase in the score

of the contrast functionH between the recovered sources (only larger perturbations,e.g. a swap of the

source orderings, would yield independent sources). According to Theorem 4.2 in [35], the Hessian of

H atX∗ is positive definite. Hence, any correct separation pointX∗ ∈ O(m) is a nondegenerate critical

point of the HSIC-based contrast functionH.

In what follows, we investigate the structure of the Hessianof the HSIC-based contrastH at indepen-

dence, i.e. at a correct unmixing matrixX∗ ∈ O(m). We first compute the second derivative ofH at

X ∈ O(m) in directionΞ = [ξ1, . . . , ξm] ∈ TXO(m),

D2H(X)(Ξ,Ξ) = d2

d ε2 (H ◦ γX)(ε)
∣∣∣
ε=0

=
m∑

i,j=1;i6=j

Ek,l

[
φ′′

(
x⊤i wkl

)
ξ⊤i wklw

⊤
klξiφ

(
x⊤j wkl

)]
(15a)

− Ek,l

[
φ′

(
x⊤i wkl

)
ξ⊤i ΞX⊤wklφ

(
x⊤j wkl

)]
(15b)

+ Ek,l

[
φ′

(
x⊤i wkl

)
ξ⊤i wklw

⊤
klξjφ

′
(
x⊤j wkl

)]
(15c)

+ Ek,l

[
φ′′

(
x⊤i wkl

)
ξ⊤i wklw

⊤
klξi

]
Ek,l

[
φ
(
x⊤j wkl

)]
(15d)

− Ek,l

[
φ′

(
x⊤i wkl

)
ξ⊤i ΞX⊤wkl

]
Ek,l

[
φ

(
x⊤j wkl

)]
(15e)

+ Ek,l

[
φ′

(
x⊤i wkl

)
ξ⊤i wkl

]
Ek,l

[
φ′

(
x⊤j wkl

)
ξ⊤j wkl

]
(15f)

− 2Ek

[
El

[
φ′′

(
x⊤i wkl

)
ξ⊤i wklw

⊤
klξi

]
El

[
φ
(
x⊤j wkl

)]]
(15g)

+ 2Ek

[
El

[
φ′

(
x⊤i wkl

)
ξ⊤i ΞX⊤wkl

]
El

[
φ
(
x⊤j wkl

)]]
(15h)

− 2Ek

[
El

[
φ′

(
x⊤i wkl

)
ξ⊤i wkl

]
El

[
φ′

(
x⊤jwkl

)
ξ⊤j wkl

]]
. (15i)

Let Ω = [ω1, . . . , ωm] = (ωij)
m
i,j=1 ∈ so(m). For X = X∗, a tedious but straightforward computation

(see Appendix A) gives

D2H(X)(XΩ,XΩ)
∣∣
X=X∗

=
m∑

1≤i<j≤m

ω2
ij (κij + κji) , (16)
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where

κij = 2Ek

[
El[skli]El[φ

′(skli)]
]
Ek

[
El[sklj]El[φ

′(sklj)]
]

(17a)

+ Ek,l[φ
′′(skli)]Ek,l[(sklj)

2φ(sklj)] (17b)

+ 2Ek,l[φ
′′(skli)]Ek,l[φ(sklj)] (17c)

− 2Ek,l[φ
′′(skli)]Ek

[
El[(sklj)

2]El[φ(sklj)]
]

(17d)

− Ek,l[φ
′(skli)skli]Ek,l[φ

′(sklj)sklj]. (17e)

Remark 1: Without loss of generality, letΩ = (ωij)1≤i<j≤m ∈ R
m(m−1)/2 in a lexicographical order.

The quadratic form (16) is a sum of pure squares, which indicates that the Hessian of the contrast function

H in (7) at the desired critical pointX∗ ∈ O(m), i.e., the symmetric bilinear formHH(X∗) : TX∗O(m)×
TX∗O(m) → R, is diagonal with respect to the standard basis ofR

m(m−1)/2. Furthermore, following the

arguments in Lemma 1, the expressionsκij + κji are positive. �

IV. FAST HSIC BASED ICA AND ITS IMPLEMENTATION

Having defined our independence criterion and its behaviourat independence, we now describe an

efficient Newton-like method for minimisingH(X). We begin in Section IV-A with an overview of the

method, including the approximate Hessian used to speed up computation. The subsequent two sections

describe how the Hessian (Section IV-B), as well asH(X) (Section IV-C) and its gradient (Section

IV-D), can be computed much faster using the incomplete Cholesky decomposition.

A. Fast HSIC Based ICA Method

We compute the gradient and Hessian ofH ◦µX in the parameter spaceRm(m−1)/2. By analogy with

equation (14), the first derivative ofH ◦ µX at 0 ∈ R
m(m−1)/2 is

D(H ◦ µX)(0)Ω = d
d ε(H ◦ µX)(εΩ)

∣∣
ε=0

=
m∑

1≤i<j≤m

ωij(τij − τji),
(18)

where

τij =

m∑

r=1;r 6=i

Ek,l

[
φ′

(
x⊤i wkl

)
x⊤j wklφ

(
x⊤r wkl

)]

+ Ek,l

[
φ′

(
x⊤i wkl

)
x⊤j wkl

]
Ek,l

[
φ

(
x⊤r wkl

)]

− 2Ek

[
El

[
φ′

(
x⊤i wkl

)
x⊤j wkl

]
El

[
φ
(
x⊤r wkl

)]]
.

(19)
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Let Q := (qij)
m
i,j=1 ∈ so(m) and ∇(H ◦ µX)(0) = (qij)1≤i<j≤m ∈ R

m(m−1)/2. Then the Euclidean

gradient∇(H ◦ µX)(0) is given entry-wise asqij = τij − τji for all 1 ≤ i < j ≤ m.

Similarly, the Hessian of the contrast functionH can be computed directly from (15). The diagonal

property of the Hessian does not hold true for arbitraryX ∈ O(m), however, and it is clearly too

expensive to compute the true Hessian at each step of our optimization. Nevertheless, since the Hessian

is diagonal atX∗ (Eq. (16)), a diagonal approximation of the Hessian makes sense in a neighborhood

of X∗. Thus, we propose a diagonal matrix for the Hessian ofH ◦ µX for an arbitraryX ∈ O(m) at

0 ∈ R
m(m−1)/2; the result is a symmetric bilinear formH(H ◦ µX)(0) : R

m(m−1)/2 × R
m(m−1)/2 → R.

Due to the smoothness of both the contrast functionH in (7) and the map̃µ on O(m) in (11), the

HessianH(H ◦ µX)(0) is smooth in an open neighborhoodU(X∗) ⊂ O(m) of X∗ ∈ O(m). Replacing

the correct unmixing componentss in (17) by the current estimatesy = X⊤w, i.e. ykli = x⊤i wkl, gives

H(H ◦ µX)(0)(Ω,Ω) ≈
m∑

1≤i<j≤m

ω2
ij (κ̃ij + κ̃ji) , (20)

where

κ̃ij = 2Ek

[
El[ykli]El[φ

′(ykli)]
]
Ek

[
El[yklj]El[φ

′(yklj)]
]

(21a)

+ Ek,l[φ
′′(ykli)]Ek,l[(yklj)

2φ(yklj)] (21b)

+ 2Ek,l[φ
′′(ykli)]Ek,l[φ(yklj)] (21c)

− 2Ek,l[φ
′′(ykli)]Ek

[
El[(yklj)

2]El[φ(yklj)]
]

(21d)

− Ek,l[φ
′(ykli)ykli]Ek,l[φ

′(yklj)yklj]. (21e)

We emphasise that (by Remark 1) the Hessian at a correct unmixing matrix X∗ is positive definite

(i.e. the terms̃κij + κ̃ji are positive). Thus, the approximate Newton-like direction Ω̃ ∈ R
m(m−1)/2 with

ω̃ij = τij−τji

eκij+eκji
(22)

for 1 ≤ i < j ≤ m is smooth, and is well defined withinU(X∗). We call the Newton-like method arising

from this approximation Fast HSIC-based Kernel ICA (FastKICA).

Although the approximation (20) can differ substantially from the true Hessian at an arbitraryX ∈
O(m), they coincide atX∗. Thus, while the diagonal approximation is exact at the correct solution, it

becomes less accurate as we move away from this solution. To ensure FastKICA is nonetheless well

behaved as the global solution is approached, we provide thefollowing local convergence result (we

investigate the performance of our algorithm given arbitrary initialisation in our numerical experiments:

see Section V).
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Corollary 1: Let X∗ ∈ O(m) be a correct unmixing matrix. Then FastKICA is locally quadratically

convergent toX∗.

Proof: By considering the approximate Newton-like directionΩ̃ in (22) asΩ̃ : U(X∗) → so(m),

each iteration of FastKICA can be written as the map

A :U(X∗)⊂O(m) → O(m), X 7→X exp(Ω̃(X)). (23)

A tedious but direct computation shows thatΩ̃(X∗) = 0, andX∗ is a fixed point ofA. To prove the local

quadratic convergence of FastKICA, we employ Lemma 2.9 in [36], bearing in mind that the required

smoothness conditions (that the function be at least twice differentiable) are fulfilled byH(X). According

to this lemma, we only need to show that the first derivative ofA,

DA : TXO(m) → TA(X)O(m), (24)

vanishes at a fixed pointX∗. Thus we compute directly

DA(X∗)(X∗Ω) = X∗Ω +X∗ D Ω̃(X∗)(X∗Ω). (25)

For the expression in (25) to vanish is equivalent to

Ω = −D Ω̃(X∗)(X∗Ω), (26)

i.e., for all 1 ≤ i < j ≤ m,

D ω̃ij(X
∗)(X∗Ω) = −ωij. (27)

Denoting the numeratorτij − τji in (22) by ω̃(n)
ij (X) and the denominator̃κij + κ̃ji by ω̃(d)

ij (X), we

compute

D ω̃ij(X
∗)(X∗Ω) = − eω(n)

ij (X∗)

(eω(d)
ij (X∗))2

D ω̃
(d)
ij (X∗)(X∗Ω)

+
D eω(n)

ij (X∗)(X∗Ω)

eω(d)
ij (X∗)

.

(28)

It can be shown that the first summand in (28) is equal to zero. Finally, following an argument almost

identical to that in Appendix A,

D ω̃
(n)
ij (X∗)(X∗Ω) = −ω̃(d)

ij (X∗)ωij. (29)

Thus, we conclude condition (26) holds true atX∗, i.e.,DA(X∗) vanishes as required. The result follows.

We emphasise that the local convergence result is proved in the population setting. In the finite sample

case, this theoretical convergence rate might not be achievable [37]. For this reason, we experimentally
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compare the convergence behavior of FastKICA with a gradient-based algorithm (see Section V-A). We

will see that FastKICA converges significantly faster than gradient descent in practice.

As an additional caveat to Corollary 1, there is in general nopractical strategy to guarantee that our ICA

algorithm will be initialised within the neighbourhoodU(X∗). Nevertheless, our experiments in Section

V demonstrate that FastKICA often converges to the global solution even from arbitrary initialisation

points, and is much more reliable in this respect than simplegradient descent.

B. Incomplete Cholesky Estimate of the Hessian

In the following, we present an explicit formulation of the Hessian, and derive its approximation using

an incomplete Cholesky decomposition of the kernel matrices. Sections IV-C and IV-D provide implemen-

tations of the contrast and gradient, respectively, that re-use the factors of the Cholesky decomposition.

First, we rewrite the pairwise HSIC terms (7) in a more convenient matrix form. LetKi denote the

kernel matrix for thei-th estimated source, i.e., its(k, l)-th entry isφ(ykli) = φ(x⊤i wkl). We further

denote byM ∈ R
n×n the centring operation,M = I − 1

n1n1⊤n , with 1n being ann× 1 vector of ones.

Lemma 2 (HSIC in terms of kernels [18]): An empirical estimate ofHSIC for two estimated sources

yi, yj is

Huv(X) :=
1

(n− 1)2
tr(MKiMKj). (30)

This empirical estimate is biased, however the bias in this estimate decreases as1/n, and thus drops

faster than the variance (which decreases as1/
√
n: see [18]).

The first and second derivatives of the Gaussian kernel function φ in (6) are




φ′(a, b) = −a−b
λ2 φ(a, b),

φ′′(a, b) = (a−b)2

λ4 φ(a, b) − 1
λ2φ(a, b).

(31)

Substituting the above terms into the approximate Hessian of H ◦µX at 0 ∈ so(m), as computed in (20),

yields

H(H ◦ µX)(0)(Ω,Ω) ≈
m∑

1≤i<j≤m

ω2
ij∆ij , (32)

where

∆ij = 2
λ2 (βiζj + ζiβj) + 4

λ4 (ζiζj − ηiηj) , (33)

and 



βi = Ek,l[φ(ykli)],

ζi = Ek,l[φ(ykli)ykiyli],

ηi = Ek,l[φ(ykli)y
2
ki].

(34)
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Here,yki = e⊤i yk is the i-th entry of thek-th sample of the estimatesY , selected by thei-th standard

basis vectorei of R
m.

We now outline how the incomplete Cholesky decomposition [30] helps to estimate the approximate

Hessian efficiently. An incomplete Cholesky decompositionof the Gram matrixKi yields a low-rank

approximationKi ≈ GiG
⊤
i that greedily minimisestr(Ki − GiG

⊤
i ). The cost of computing then × d

matrix Gi is O(nd2), with d ≪ n. Greater values ofd result in a more accurate reconstruction ofKi.

As pointed out in [16, Appendix C], however, the spectrum of aGram matrix based on the Gaussian

kernel generally decays rapidly, and a smalld yields a very good approximation (the experiments in

[23] provide further empirical evidence). With approximate Gram matrices, the empirical estimates of

the three terms in Equation (34) become

β̂i =
1

n2
(1⊤nGi)(1

⊤
nGi)

⊤,

ζ̂i =
1

n2
(y⊤i Gi)(y

⊤
i Gi)

⊤,

η̂i =
1

n2
((yi ⊙ yi)

⊤Gi)(G
⊤
i 1n),

whereyi is the sample vector for theith estimated source, and⊙ the entry-wise product of vectors.

C. Incomplete Cholesky Estimate of HSIC

Lemma 2 states an estimate of the pairwise HSIC as the trace ofa product of centred kernel matrices

MKiM , MKjM . Reusing the Cholesky decomposition from above, i.e.MKiM = MGiG
⊤
i M =:

G̃iG̃
⊤
i , whereG̃i is n × di, we arrive at an equivalent trace of a much smallerdj × dj matrix for each

pair of estimated sources(yi, yj), and avoid any product ofn× n matrices:

Ĥ(X) =
1

(n − 1)2

∑

1≤i<j≤m

tr
(
G̃iG̃

⊤
i G̃jG̃

⊤
j

)

=
1

(n − 1)2

∑

1≤i<j≤m

tr
((
G̃⊤

j G̃i

)(
G̃⊤

i G̃j

))
.

D. Incomplete Cholesky Estimate of the Gradient

We next provide an approximation of the gradient in terms of the same Cholesky approximation

K = GG⊤. Williams and Seeger [38] describe an approximation ofK based on an index setI of length

d with unique entries from{1, . . . , n}:

K ≈ K ′ := K:,IK
−1
I,IKI,:, (35)
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whereK:,I is the Gram matrix with the rows unchanged, and the columns chosen from the setI; and

KI,I is thed× d submatrix with both rows and columns restricted toI. We adapt the approach of Fine

and Scheinberg [30] and choose the indicesI in accordance with an incomplete Cholesky decomposition

to minimisetr (K −K ′).

For simplicity of notation, we will restrict ourselves to the gradient of HSIC for a pair(yi, yj) and

ignore the normalisation by(n−1)−2. The gradient ofĤ(X) is merely the sum of all pairwise gradients.

Let K be the Gram matrix foryi andL for yj. With centring matrices̃K = MKM and L̃ = MLM

the (unnormalised) differential of the pairwise HSIC is [23]

dtr
(
K̃ ′L̃′

)
= tr

(
K̃ ′d(L′)

)
+ tr

(
L̃′d(K ′)

)

= tr
(
K̃ ′d(L′)

)
+ tr

(
L̃′d(K:,IK

−1
I,IKI,:)

)

= tr
(
K̃ ′d(L′)

)

+ 2vec(L̃′K:,IK
−1
I,I )⊤vec(dK:,I)

− vec(K−1
I,IKI,:L̃

′K:,IK
−1
I,I )⊤vec(dKI,I). (36)

Our expression ford(K ′) is derived in Appendix B-A. The expansion ofdL′ is analogous. The matrix

decompositions shrink the size of the factors in (36). An appropriate ordering of the matrix products

allows us to avoid ever generating or multiplying ann× n matrix. In addition, note that for a columnx

of X,

vec(dK:,I) = dvec(K:,I) =
(
∂vec(K:,I)/∂x

⊤
)
dvec(x).

The partial matrix derivative∂vec(K:,I)/∂x
⊤ is defined in Appendix B-B and has sizend×m, whereas

the derivative of the fullK has n2 × m entries. Likewise,∂vec(KI,I)/∂x
⊤ is only d2 × m. We

must also account for the rapid decay of the spectrum of Gram matrices with Gaussian kernels [16,

discussion in Appendix C], since this can cause the inverse of KI,I to be ill-conditioned. We therefore

add a small ridge of10−6 to KI,I , although we emphasise that our algorithm is insensitive tothis value.

We end this section with a brief note on the overall computational cost of FastKICA. As discussed

in [23, Section 1.5], the gradient and Hessian are computable in O(nm3d2) operations. A more detailed

breakdown of how we arrive at this cost may be found in [23], bearing in mind that the Hessian has the

same cost as the gradient thanks to our diagonal approximation.
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Fig. 2. Convergence measured by HSIC, by the Frobenius norm of the difference between thei-th iterateX(i) andX(30), and

by the Amari error. FastKICA converges faster. The plots show averages over 25 runs with40,000 samples from 16 sources.

V. NUMERICAL EXPERIMENTS

In our experiments, we demonstrate four main points: First,if no alternative algorithm is used to

provide an initial estimate ofX, FastKICA is resistant to local minima, and often convergesto the

correct solution. This is by contrast with gradient descent, which is more often sidetracked to local

minima. In particular, if we choose sources incompatible with the initialising algorithm (so that it fails

completely), our method can nonetheless find a good solution.7 Second, when a good initial point is given,

the Newton-like algorithm converges faster than gradient descent. Third, our approach runs sufficiently

quickly on large-scale problems to be used either as a standalone method (when a good initialisation is

impossible or unlikely), or to fine tune the solution obtained by another method. While not the fastest

method tested, demixing performance of FastKICA achieves areasonable compromise between speed and

solution quality, as demonstrated by its performance as thedeparture of the mixture from independence

becomes non-smooth. Finally, FastKICA shows better resistance to outliers than alternative approaches.

Our artificial data for Sections V-A (comparison of FastKICAwith gradient descent) and V-B (com-

putational cost benchmarks) were generated in accordance with [17, Table 3], which is similar to the

artificial benchmark data of [16]. Each source was chosen randomly with replacement from 18 different

distributions having a wide variety of statistical properties and kurtoses. Sources were mixed using a

random matrix with condition number between one and two. Section V-C describes our experiments on

source smoothness vs performance, and Section V-D containsour experiments on outlier resistance. We

used the Amari divergence, defined by [39], as an index of ICA algorithm performance (we multiplied

7Note the criterion optimised by FastKICA is also the statistic of an independence test [10], [22]. This test can be applied

directly to the values of HSIC between pairs of unmixed sources, to verify the recovered signals are truly independent; no

separate hypothesis test is required.
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this quantity by 100 to make the performance figures more readable). In all experiments, the precision

of the incomplete Cholesky decomposition was10−6n. Convergence was measured by the difference in

HSIC values over consecutive iterations.

A. Comparison with Gradient Descent

We first compare the convergence of FastKICA with a simple gradient descent method [23]. In order to

find a suitable step width along the gradient mapped toO(m), the latter uses a quadratic interpolation of

HSIC along the geodesic. This requires HSIC to be evaluated at two additional points. Both FastKICA and

quadratic gradient descent (QGD) use the same gradient and independence measure. Figure 2 compares

the convergence for both methods (on the same data) of HSIC, the Amari error, and the Frobenius norm

of the difference between thei-th iterateX(i) and the solutionX(30) reached after 30 iterations. The

results are averaged over 25 runs. In each run,40,000 observations from 16 artificial, randomly drawn

sources were generated and mixed. We initialised both methods with FastICA [2], and used a kernel

width of λ = 0.5. As illustrated by the plots, FastKICA approaches the solution much faster than QGD.

We also observe that the number of iterations to convergencedecreases when the sample size grows. The

plot of the Frobenius norm suggests that convergence of FastKICA is only linear for the artificial data

set. While local quadratic convergence is guaranteed in thepopulation setting, the required properties for

Corollary 1 do not hold exactly in the finite sample setting, which can reduce the convergence rate [37].

For arbitrary initialisations, FastKICA is still applicable with multiple restarts, although a larger kernel

width is more appropriate for the initial stages of the search (local fluctuations in FastKICA far from

independence are then smoothed out, although the bias in thelocation of the global minimum increases).

We setλ = 1.0 and a convergence threshold of10−8 for both FastKICA and QGD. For40,000 samples

from 8 artificial sources, FastKICA converged on average for37% of the random restarts with an average

error (× 100) of0.54±0.01, whereas the QGD did not yield any useful results at all (meanerror× 100:

74.14±1.39). Here, averages are over 10 runs with 20 random initialisations each. The solution obtained

with FastKICA can be refined further by shrinking the kernel width after initial convergence, to reduce

the bias.

B. Performance and Cost vs Other Approaches

Our next results compare the performance and computationalcost of FastKICA, Jade [4], KDICA

[8], MICA [31], MILCA [6], RADICAL [5], and quadratic gradient descent (QGD) [23]. The timing

experiments for all methods except MILCA were performed on the same dual AMD Opteron (2x AMD
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Opteron(tm) Processor 250, 64KiB L1 cache, 1MiB L2 cache, GiB System Memory). Since MILCA was

much slower, its tests were run in parallel on 64 bit cluster nodes with 2–16 processors and 7.8–94.6 GB

RAM, running Ubuntu 7.04: these nodes were generally fasterthan the one used for the other algorithms,

and the runtime of MILCA is consequently an underestimate, relative to the remaining methods.

We demixed 8 sources and40,000 observations of the artificial data. The run times include the

initialisation by Jade for FastKICA, QGD, and KDICA, and areaveraged over 10 repetitions for each

data set (except for the slower methods RADICAL and MILCA). QGD was run for 10 iterations, and the

convergence threshold for FastKICA was10−5 (λ = 0.5). MICA was allowed a maximum number of 50

iterations, since with the default 10 iterations, the Amarierror was more than twice as high (0.84±0.74),

and worse than that all other algorithms besides Jade.

Figure 3 displays the error and time for 24 data sets. We see that demixing performance is very

similar across all nonparametric approaches, which perform well on this benchmark. MICA has the best

median performance, albeit with two more severely misconverged solutions. While small, the median

performance difference is statistically significant according to a level0.05 sign test. FastKICA and

QGD provide the next best result, and exhibit a small but statistically significant performance difference

compared with KDICA, RADICAL and Jade, but not MILCA. The time differences between the various

algorithms are much larger than their performance differences. In this case, the ordering is Jade, KDICA,

MICA, FastKICA, QGD, RADICAL, and MILCA. The additional evaluations of HSIC for the quadratic

approximation make QGD slower per iteration than FastKICA.As shown above, FastKICA also converges

in fewer iterations than QGD, requiring4.32 iterations on average.

We also compared KDICA and FastKICA when random initialisations were used. We see in Figure 5(a)

that FastKICA solutions have a clear bivariate distribution, with a large number of initialisations reaching

an identical global minimum: indeed, the correct solution is clearly distinguishable from local optima on

the basis of its HSIC value. By contrast, KDICA appears to halt at a much wider variety of local minima

even for these relatively simple data, as evidenced by the broad range of Amari errors in the estimated

unmixing matrices. Thus, in the absence of a good initialising estimate (where classical methods fail),

FastKICA is to be preferred. We will further investigate misconvergence behaviour of the different ICA

algorithms in the next section, for a more difficult (non-smooth) demixing problem.

C. ICA performance as a function of problem smoothness

While the foregoing experiments provide a good idea of computational cost, they do not address the

performance of the various ICA methods as a function of the statistical properties of the sources (rather,
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Jade 0.83±0.17 0.46±0.002

KDICA 0.47±0.12 5.09±0.8

MICA 0.37±0.28 8.10±3.4

FKICA 0.40±0.10 91.27±22.9

QGD 0.41±0.08 618.17±208.7

RAD 0.44±0.09 10.72 · 103±50.38

MILCA 0.44±0.06 18.97 · 104±5.1 · 104

Fig. 3. Comparison of run times (left) and performance (middle) for various ICA algorithms. FastKICA is faster than MILCA,

RADICAL, and gradient descent with quadratic approximation, and its results compare favorably to the other methods. KDICA

is even faster, but performs less well than FastKICA. Both KDICA and MICA have higher variance than FastKICA. The values

are averages over 24 data sets.

the performance is an average over sources with a broad variety of behaviours, and is very similar across

the various nonparametric approaches). In the present section, we focus specifically on how well the

ICA algorithms perform as a function of the smoothness of theICA problem. Our source distributions

take the form of Gaussians with sinusoidal perturbations, and are proportional tog(x)(1 + sin(2πνβx)),

whereg(x) is a Gaussian probability density function with unit variance,β is the maximum perturbing

frequency considered andν is a scaling factor ranging from0.05 to 1.05 with spacing0.05 (the choice

of β will be addressed later). The sinusoidal perturbation is multiplied by g(x) to ensure the resulting

density expression is everywhere non-negative. Plots of the source probability density function and its

characteristic function are given in Figure 4. Bearing in mind that purely Gaussian sources can only be

resolved up to rotation [1], the resulting ICA problem becomes more difficult (for algorithms making

smoothness assumptions on the sources) as the departure from Gaussianity is encoded at increasing

frequencies, which are harder to distinguish from random noise for a given sample size.8 By contrast, the

sources used in the previous section (taken from [17, Table 3]) yield very similar demixing performance

when comparing across the nonparametric algorithms used inour benchmarks. One reason for this

similarity is that the departure from Gaussianity of these sources has substantial amplitude at low

8This perturbation to the Gaussian distribution differs from that used for designing contrast functions in classical ICA studies,

which employ Edgeworth [1] or Gram-Charlier [39] expansions. We shall see, however, that our perturbed sources are better

suited to characterizing the interaction between ICA performance and the choice of kernel, for methods using kernel density

estimates (MICA, and KDICA) and for FastKICA.
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frequencies, resulting in ICA problems of similar difficulty for MICA, KDICA, and FastKICA.9 We

remark that linear mixtures where the departure from independence occurs only at high frequencies are

not typical of real-life ICA problems. That said, such mixtures represent an important failure mode of

ICA algorithms that make smoothness assumptions on the source densities (as for MICA, KDICA, and

FastKICA). Thus, our purpose in this section is to compare the decay in unmixing performance across

the various ICA algorithms as this failure mode is approached.

We decide on the base frequencyβ of the perturbation with reference to the parameters of MICA,

to simplify the discussion of performance. The MICA algorithm optimizes a sum of entropies of each

mixture component, where the entropies are computed using discretised empirical estimates of the mixture

probability distributions. We can express the distribution estimates by first convolving the mixture sample

by a B-spline kernel (of order 3, although other orders are also possible) and then downsampling to get

probability estimates at the gridpoints. If we consider thepopulation setting and perform these operations

in the frequency domain, this corresponds to multiplying the Fourier transform of the source density by

that of the B-spline, and then aliasing the frequency components that exceed the grid Nyquist frequency.

Given a baseline bandwidthb0, the grid spacing is computed as a function of the sample sizen

according tobn = b0 × 2.107683/n0.2; without loss of generality, we setb0 = 1. The spline kernel

bandwidth is also scaled by this factor, such that the zeros in the kernel spectrum occur at integer multiples

of fm := n0.2/(2.107683). To use these factors in settingβ, consider two sources consisting of perturbed

Gaussians with identicalβ. The characteristic function of the two mixtures resultingfrom a rotation with

angleπ/4 has a distinctive peak atβ
√

2 when ν = 1. Thus, by settingβ = n0.2/(2.107683
√

2), this

peak will fall at the first minimum of the spline kernel spectrum. An illustration is provided in Figure

4. Note in particular the decay of the spline spectrum towards its first zero atfm: any component of

the mixture characteristic function at this frequency willbe severely attenuated, and thus we expect that

demixing sources withν approaching 1 will be difficult (the sources will appear Gaussian).

We sampled 25 data sets consisting of two sources withn = 1, 000 for each value ofν, and mixed

the sources with orthonormal matrices. To ensure comparable results, we used the same set of 25 mixing

matrices across allν. The algorithms were run for a maximum of 50 iterations. The convergence threshold

for FastKICA was a0.5% change of HSIC, and the bandwidthλ = 0.5. MICA used a bandwidth of

b0 = 1. For these bandwidth choices, we emphasise that both FKICA and MICA reached chance level

9As we shall see, the spacings-based entropy estimates of RADICAL and the graph-based mutual information estimates of

MILCA behave quite differently.
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Fig. 4. Left: Source probability density function for a perturbation at frequency0.7fm/
√

2, wherefm is the frequency of the

first zero in the spectrum of the spline kernel used by MICA.Middle: Characteristic function of the source, showing peaks at the

perturbation frequency.Right: Empirical (smoothed) characteristic function of the mixture of two sources with angleπ/4. Two

peaks are seen at locations0.7fm. The spectrum of the MICA kernel (a 3rd order B-spline) is superposed. The dashed vertical

lines are atfm/2, which is the Nyquist frequency for the grid used by MICA. Thus, perturbations exceeding this frequency

will be aliased.

performance (i.e. complete failure) at the same source perturbing frequency, corresponding toν = 1,

making the behaviour of these two methods across theν range directly comparable. In other words, we

report therelative performance of the two algorithms over the frequency range for which they operate at

better than chance level. The Amari errors in Figure 5(b) areaverages over 10 random initialisations and

the 25 data sets for each frequency. Each algorithm was initialised with the same 10 random orthonormal

matrices.

We note first of all that FastKICA has a longerν interval in which the average Amari error is

very low, compared with MICA and KDICA. In addition, asν rises above 0.5, the average error of

FastKICA is consistently below that of MICA and KDICA. On theother hand, for the lowest perturbing

frequencies, KDICA and MICA perform better than FastKICA. The two most computationally costly

methods, RADICAL and MILCA, perform best, with a low Amari divergence over all the highν values

tested. This is as expected, for two reasons: first, both methods perform an exhaustive search over all pairs

of Jacobi angles, and are not susceptible to local minima. Second, RADICAL is based on a spacings

estimate of entropy, and MILCA on ak-nn estimate of the mutual information: in other words, both

methods adapt automatically to the scale of the variations in the mixture densities. That said, efficient

optimization techniques have yet to be developed for RADICAL and MILCA.

We next examine in more detail the convergence behaviour leading to the drop in average performance

of FastKICA, MICA, and KDICA asν rises. First, as noted in the previous section, KDICA can be

sensitive to local minima: thus its average performance degrades even for low values ofν as a large number

April 9, 2009 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. X, APRIL9, 2009 24

of initialisations result in misconvergence. The behaviour of MICA is more complex, with performance

dropping atν ≈ 0.4 but recovering forν ≈ 0.55 (two more such oscillations occur at higherν). At

ν ≈ 0.4, the MICA entropy score develops a local minimum at a rotation of π/4 from the true unmixing

matrix, resulting in a substantial number of initializations converging to this incorrect solution, as well

as a group of correct solutions (this local minimum is also seen for otherb0 values, but at different

onset values ofν). The local minimum becomes less pronounced atν ≈ 0.55, but then strengthens again

at ν ≈ 0.65. By contrast, the results for FastKICA at moderate values ofν more closely follow the

histogram of Figure 5(a), with a large fraction of solutionsat the global optimum, and the remaining

misconverged solutions having a range of Amari errors. Taking the best solution over all 10 initializations

(as measured by the HSIC or entropy score), rather than the average solution, the results of MICA and

FastKICA at largerν both remain indistinguishable from RADICAL and MILCA untilν ≈ 0.8. For

ν > 0.8, performance worsens towards chance level asν rises to 1, at which point the global optimum of

both contrast functions occurs at a random angle. The onset of this performance drop can be increased for

both FastKICA and MICA by decreasingb0 or λ, respectively; but at a cost of worse mean performance

due to more pronounced local minima. On the other hand, the best KDICA result continues to perform as

well as RADICAL and MILCA, since the slow decaying Fourier transform of its Laplace kernel makes

it sensitive to higher frequencies.
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Fig. 5. (a) Comparison of performance for arbitrary initialisations (n = 40,000, m = 8). Amari error histograms are shown for

FastKICA vs. KDICA with mixed artificial sources (10 data sets, 20 initialisations each). FastKICA reaches a global minimum

far more often than KDICA. (b) Amari error depending on the sine frequencies forn = 1000 samples and two sources. (c)

Effect of outliers on the performance of the ICA algorithms,for two sources of lengthn = 1000, drawn independently with

replacement from [17, Table 3], and corrupted at random observations with outliers at±5 (where each sign has probability0.5).

Each point represents an average over100 independent experiments. The number of corrupted observations in both signals is

given on the horizontal axis.
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D. Resistance to Outliers

In our final experiment, we investigate the effect of outliernoise added to the observations. We selected

two generating distributions from the benchmark data in [17, Table 3], randomly and with replacement.

After combining these signals with a randomly generated matrix with condition number between 1 and

2, we generated a varying number of outliers by adding±5 (with equal probability) to both signals at

random locations. We evaluated HSIC using a Gaussian kernelof sizeλ = 0.5. For FastKICA and MICA,

we chose the best result out of 3 random initialisations, according to HSIC or the estimated entropy,

respectively. The initialisation for KDICA was the FastKICA result, since the KDICA is sensitive to

poor initialisation (as seen in Section V-B). Results are shown in Figure 5(c). It is clear that FastKICA

substantially outperforms the alternatives in outlier resistance.

VI. CONCLUSION

We demonstrate that an approximate Newton-like method, FastKICA, can improve the speed and per-

formance of kernel/characteristic function-based ICA methods. We emphasise that FastKICA is applicable

even if no good initialisation is at hand. With a modest number of restarts and a kernel width that shrinks

near independence (on our data, fromλ = 1.0 to λ = 0.5), the correct global optimum is consistently

found. A good initialisation results in more rapid convergence, and we do not need to adapt the kernel size.

Our method demonstrates much better outlier resistance than recently published competing approaches.

Moreover, our optimization method can be applied to any twice differentiable RKHS kernel, rather than

relying on the specific properties of particular kernels (tobe Laplace in the case of [8], or to be a spline

kernel with compact support in [31]).

Several directions for future work are suggested by the present study. First, the kernel bandwidth used

is currently chosen heuristically. It would be of interest to develop more principled methods for choosing

this bandwidth based on properties of the data. Second, it isnotable that ICA methods based on spacings

estimates of entropy, or nearest-neighbour estimates of mutual information, perform very well for ICA

problems where the departure from independence is encoded at high frequencies. Unfortunately, efficient

optimization techniques have yet to be developed for ICA using these dependence measures.

APPENDIX A

EVALUATION OF THE SECOND DERIVATIVE OF
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THE HSIC BASED ICA CONTRAST

We assume the unmixing matrix is correct, and thusX = X∗. The term (15a) for a fixed pair(i, j)

can be computed as

Ek,l

[
φ′′ (skli)ω

⊤
i skls

⊤
klωiφ (sklj)

]

=
m∑

r,t=1;r,t6=i

ωirωitEk,l

[
φ′′ (skli) sklrskltφ (sklj)

]
.

(37)

Under the assumptions of independence and whitened mixtures, the corresponding(r, t) expression can

be written 



0, r 6= t;

2Ek,l [φ
′′ (skli)φ (sklj)] , r = t 6= i, j;

Ek,l[φ
′′ (skli)]Ek,l

[
s2kljφ (sklj)

]
, r = t = j.

(38)

Thus the term (15a) can be further simplified as

(15a): Ek,l

[
φ′′ (skli)ω

⊤
i skls

⊤
klωiφ (sklj)

]

=

m∑

r=1;r 6=i,j

2ω2
irEk,l[φ

′′ (skli)]Ek,l[φ (sklj)]

+ ω2
ijEk,l[φ

′′ (skli)]Ek,l

[
s2kljφ (sklj)

]
.

(39)

By applying the same techniques, the remaining terms (15b)–(15i) become

(15b): Ek,l

[
φ′ (skli)ω

⊤
i Ωsklφ (sklj)

]

=
m∑

r=1;r 6=i

−ω2
irEk,l

[
φ′ (skli) skli

]
Ek,l [φ (sklj)] ,

(40)

(15c): Ek,l

[
φ′ (skli)ω

⊤
i skls

⊤
klωjφ

′ (sklj)
]

= − ω2
ijEk,l

[
φ′ (skli) skli

]
Ek,l

[
φ′ (sklj) sklj

]
,

(41)

(15d): Ek,l

[
φ′′ (skli)ω

⊤
i skls

⊤
klωi

]
Ek,l [φ (sklj)]

=

m∑

r=1;r 6=i

2ω2
irEk,l

[
φ′′ (skli)

]
Ek,l [φ (sklj)] ,

(42)

(15e): Ek,l

[
φ′ (skli)ω

⊤
i Ωskl

]
Ek,l [φ (sklj)]

=

m∑

r=1;r 6=i

−ω2
irEk,l

[
φ′ (skli) skli

]
Ek,l [φ (sklj)] ,

(43)

(15f): Ek,l

[
φ′(skli)ω

⊤
i skl

]
Ek,l

[
φ′(sklj)ω

⊤
j skl

]
= 0, (44)
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(15g): Ek

[
El

[
φ′′ (skli)ω

⊤
i skls

⊤
klωi

]
El [φ (sklj)]

]

=

m∑

r=1;r 6=i,j

2ω2
irEk,l

[
φ′′ (skli)

]
Ek,l [φ (sklj)]

+ ω2
ijEk,l

[
φ′′(skli)

]
Ek

[
El

[
s2klj

]
El [φ(sklj)]

]
,

(45)

(15h): Ek

[
El

[
φ′ (skli)ω

⊤
i Ωskl

]
El [φ (sklj)]

]

=

m∑

r=1;r 6=i

−ω2
irEk,l

[
φ′ (skli) skli

]
Ek,l [φ (sklj)] ,

(46)

(15i): Ek

[
El

[
φ′(skli)ω

⊤
i skl

]
El

[
φ′(sklj)ω

⊤
j skl

]]

=−ω2
ijEk

[
El[skli]El

[
φ′(skli)

]]
Ek

[
El[sklj]El

[
φ′(sklj)

]]
.

(47)

Substituting (39)–(47) into equation (15), the result in equation (16) follows directly fromωij = −ωji.

APPENDIX B

DERIVATION OF THE APPROXIMATE GRADIENT AND THE MATRIX PARTIAL DERIVATIVES

In this appendix, we first derive the differentialdK ′ of the Cholesky approximation to the Gram matrix

K, and use it to obtain the differential of the approximate HSIC in (36). We then give an expression for

the differential of the factors ofK ′, which involves the entry-wise derivative of the Gram matrix with

respect to a columnx of X. Details have been published in [23].

A. Differential of the incomplete Cholesky approximation to HSIC

Recall that the differential of the low-rank approximationto HSIC is

dtr
(
K̃ ′L̃′

)
= tr

(
K̃ ′d(L′)

)
+ tr

(
L̃′d(K ′)

)
. (48)

We expand the differential ofK ′ = K:,IK
−1
I,IKI,: by the product rule and by rewritingd(K−1

I,I ) =

K−1
I,I (dKI,:)K

−1
I,I . Plugging the result into the second termtr

(
L̃′d(K ′)

)
from (48) yields

tr
(
L̃′d(K ′)

)

= tr
(
L̃′dK:,IK

−1
I,IKI,:

)
+ tr

(
L̃′K:,IK

−1
I,I dKI,:

)

− tr
(
L̃′K:,IK

−1
I,I (dKI,I)K

−1
I,IKI,:

)
.

(49)

Using the symmetry of the Gram matrices, the second term on the right hand side can be transformed as

tr
(
L̃′K:,IK

−1
I,I dKI,:

)
= tr

(
(dK:,IK

−1
I,IKI,:)

⊤L̃′⊤
)

= tr
(
L̃′dK:,IK

−1
I,IKI,:

)
,
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and (49) becomes

tr
(
L̃′d(K ′)

)
= 2 tr

(
K−1

I,IKI,:L̃
′dK:,I

)
−tr

(
K−1

I,IKI,:L̃
′K:,IK

−1
I,I dKI,I

)

= 2vec(L̃′K:,IK
−1
I,I )⊤vec(dK:,I)

− vec(K−1
I,IKI,:L̃

′K:,IK
−1
I,I )⊤vec(dKI,I).

The other termtr
(
K̃ ′d(L′)

)
in (48) is equivalent.

B. Derivative of the Gram matrix with respect to X

The derivative of the Gram matrix entries with respect to a particular columnx of the unmixing matrix

X depends on the kernel. We employ a Gaussian kernel here, but one could easily obtain the derivatives

of additional kernels: these can then be plugged straightforwardly into the equations in the previous

section.

Lemma 3 (Derivative of K with respect to X): Let K be the Gram matrix computed with a Gaussian

kernel, and letx be anm× 1 column of the unmixing matrix, such that the(i, j)th entry ofK is

kij = φ(yi, yj) = exp

[ −1

2λ2
x⊤Wijx

]
,

whereWij = (wi −wj)(wi −wj)
⊤, andwi is theith sample of observations. Then the derivative of any

kij with respect tox is
∂kij

∂x⊤
= −kij

λ2
x⊤(wi − wj)(wi − wj)

⊤.

Since the above derivative is a vector, we require appropriate notation to express the derivative of

the entire Gram matrix in a tractable form. This is done usingthe vec(A) operation, which stacks the

columns of the matrixA on top of each other. Thus, the resulting differential is

d(vecK) =

[
∂k11

∂x
, . . . ,

∂kn1

∂x
,
∂k12

∂x
, . . . ,

∂knn

∂x

]⊤

︸ ︷︷ ︸
∂vec(K)/∂x⊤

d(vec x), (50)

whered(vec x) = dx and∂k11/∂x = (∂k11/∂x
⊤)⊤. The derivatives of the submatrices∂vec(K:,I)/∂x

⊤

and∂vec(KI,I)/∂x
⊤ are submatrices of∂vec(K)/∂x⊤, restricted to the rows∂kij/∂x

⊤, with 1 ≤ i ≤ n

andj ∈ I, or bothi, j ∈ I, respectively.
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[27] H. Shen and K. Hüper, “Newton-like methods for parallel independent component analysis,” inMLSP 16, Maynooth,

Ireland, 2006, pp. 283–288.

[28] H. Shen, S. Jegelka, and A. Gretton, “Geometric analysis of Hilbert-Schmidt independence criterion based ICA contrast

function,” National ICT AustraliaTechnicalReport(PA006080) , ISSN 1833-9646, October 2006.

[29] ——, “Fast kernel ICA using an approximate Newton method,” in AISTATS 11. Microtome, 2007, pp. 476–483.

[30] S. Fine and K. Scheinberg, “Efficient SVM training using low-rank kernel representations,”Journalof MachineLearning

Research, vol. 2, no. 22, pp. 243–264, 2001.

[31] D.-T. Pham, “Fast algorithms for mutual information based independent component analysis,”IEEE Transactionson Signal

Processing, vol. 52, no. 10, pp. 2690–2700, 2004.

[32] W. M. Boothby, An Introduction to DifferentiableManifolds and RiemannianGeometry,Revised, 2nd ed. Academic

Press, 2002.

[33] M. Spivak, A ComprehensiveIntroduction to Differential Geometry,Vol. 1 – 5, 3rd ed. Publish or Perish, Inc, 1999.

[34] P.-A. Absil, R. Mahony, and R. Sepulchre,Optimization Algorithms on Matrix Manifolds. Princeton, NJ: Princeton

University Press, 2008.

[35] D. Gabay, “Minimizing a differentiable function over adifferential manifold,” Journal of Optimization Theory and

Applications, vol. 37, no. 2, pp. 177–219, 1982.

[36] M. Kleinsteuber, “Jacobi-type methods on semisimple Lie algebras – a Lie algebraic approach to the symmetric eigenvalue

problem,” Ph.D. dissertation, Bayerische Julius-Maximilians-Universität Würzburg, 2006.

[37] E. Oja and Z. Yuan, “The FastICA algorithm revisited: Convergence analysis,”IEEE Transactionson Neural Networks,

vol. 17, no. 6, pp. 1370–1381, 2006.

[38] C. K. I. Williams and M. Seeger, “Using the Nystrom method to speed up kernel machines,” inNIPS14. The MIT Press,

2001, pp. 682–688.

[39] S. Amari, A. Cichocki, and H. H. Yang, “A new learning algorithm for blind signal separation,” inNIPS 8. The MIT

Press, 1996, pp. 757–763.

April 9, 2009 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. X, APRIL9, 2009 31

Hao Shen received his Bachelor degree in Mechanical Engineering andApplied Mathematics from Xi’an

Jiaotong University, China, in 2000, and his Masters degrees in Computer Studies and Computer Science

from the University of Wollongong, Australia, in 2002 and 2004, respectively; and received his PhD from

the Australian National University, Australia, in 2008. Currently, he is a Post-doc at the Institute for Data

Processing, Technische Universität München, Germany. His research interests focus on applying geometric

optimisation techniques to linear independent component analysis and related topics in signal processing.

It includes the analysis of existing methods and the development of new efficient numerical algorithms to solve these kind of

problems. He is a member of IEEE.

Stefanie Jegelka received her diploma in Computer Science with specialisation in Bioinformatics (with

distinction) from the University of Tuebingen, Germany, in2007. She also spent two semesters at the

University of Texas at Austin as an exchange student. Since 2006, she has been a research assistant at

the Max Planck Institute for Biological Cybernetics in Tuebingen, where she is now working towards

a PhD. Her interests include machine learning and kernel methods, theoretical aspects of clustering and

graph cuts with respect to statistical learning theory and approximation, and geometric and combinatorial

optimization. She has received a Google Anita Borg Scholarship and has been a scholar of the German National Academic

Foundation during the studies for her diploma.

Arthur Gretton is a project scientist with the Machine Learning Departmentat Carnegie Mellon University

since February 2009, and is affiliated as a research scientist with the Max Planck Institute for Biological

Cybernetics, where he has worked since September 2002. He received degrees in physics and systems

engineering from the Australian National University in 1996 and 1998, respectively; and completed his

PhD with the Signal Processing and Communications Laboratory and Microsoft Research at the University

of Cambridge in 2003. His research interests include machine learning, kernel methods, statistical learning

theory, nonparametric hypothesis testing, blind source separation, Gaussian processes, and non-parametric techniques for neural

data analysis.

April 9, 2009 DRAFT


