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Abstract. The reconstruction of a signal from only a few measurements,
deconvolving, or denoising are only a few interesting signal processing ap-
plications that can be formulated as linear inverse problems. Commonly,
one overcomes the ill-posedness of such problems by finding solutions
that match some prior assumptions on the signal best. These are often
sparsity assumptions as in the theory of Compressive Sensing. In this
paper, we propose a method to track the solutions of linear inverse prob-
lems, and consider the two conceptually different approaches based on the
synthesis and the analysis signal model. We assume that the correspond-
ing solutions vary smoothly over time. A discretized Newton flow allows
to incorporate the time varying information for tracking and predicting
the subsequent solution. This prediction requires to solve a linear system
of equations, which is in general computationally cheaper than solving a
new inverse problem. It may also serve as an additional prior that takes
the smooth variation of the solutions into account, or as an initial guess
for the preceding reconstruction. We exemplify our approach with the
reconstruction of a compressively sampled synthetic video sequence.

1 Introduction

Linear inverse problems arise in various signal processing applications like in
signal deconvolution [Bronstein et al., 2005], denoising [Elad and Aharon, 2006],
inpainting [Bertalmı̀o et al., 2000], or signal reconstruction from few indirect
measurements as in Compressive Sensing [Donoho, 2006],[Candès et al., 2006].
Basically, the goal is to compute or reconstruct a signal s ∈ Rn from a set of
measurements y ∈ Rm, with m being less or equal to n. Formally, this measure-
ment process can be written as

y = As + e, (1)

where the vector e ∈ Rm models sampling errors and noise, and A ∈ Rm×n is
the measurement matrix. In most interesting cases, recovering s from the mea-
surements y is ill-posed because either the exact measurement process and hence
A is unknown as in blind signal deconvolution, or the number of observations is
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much smaller than the dimension of the signal, which is the case in Compressive
Sensing. In this paper, we restrict to the latter case where the measurement
matrix A is known.

To overcome the ill-posedness of this problem and to stabilize the solution,
prior assumptions on the signal can be exploited. In this paper, we discuss two
conceptually different approaches, the so called synthesis and the analysis signal
model, cf. [Elad et al., 2007].

1.1 The Synthesis and the Analysis Model

One assumption that has proven to be successful in signal recovery,
cf. [Elad et al., 2010], is that natural signals admit a sparse representation x ∈
Rd over some dictionary D ∈ Rn×d with d ≥ n. We say that a vector x is sparse
when most of its coefficients are equal to zero or small in magnitude. When s ad-
mits a sparse representation over D, it can be expressed as a linear combination
of only very few atoms {di}di=1, the columns of D, which reads as

s = Dx. (2)

For d > n, the dictionary is said to be overcomplete or redundant, consequently
the representation x is not unique.

Now, an approximate solution s? to the original signal can be obtained from
the measurements y by first solving

x? = arg min
x∈Rd

g(x)

subject to ‖ADx− y‖22 ≤ ε, (3)

and afterwards synthesizing the signal from the computed sparse coefficients via
s? = Dx?. As the signal is synthesized from the sparse coefficients, the recon-
struction model (3) is called the synthesis reconstruction model [Elad et al., 2007].
Therein, g : Rn 7→ R is a function that promotes or measures sparsity and ε ∈ R+

is an estimated upper bound on the noise power ‖e‖22. Although the choice
of the `1-norm for g as a sparseness prior leads to well behaved convex opti-
mization problems and to perfect signal recovery under certain assumptions, cf.
[Donoho and Elad, 2003], it has been shown in [Chartrand and Staneva, 2008]
that in most cases, the concave `p-pseudo-norm

‖v‖pp :=
∑
i

|vi|p, (4)

with 0 < p < 1 severely outperforms its convex counterpart. For the presented
approach of tracking the solutions of time-varying linear inverse problems, we
do not assume convexity of g but we require differentiability. This is why we
employ a smooth approximation of the `p-pseudo-norm. Generally, to find a
solution of Problem (3), various algorithms based on convex or non-convex op-
timization, greedy pursuit methods, or the Bayesian framework exist that use
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different choices for g. For a broad overview of such algorithms, we refer the
interested reader to [Tropp and Wright, 2010].

Besides utilizing the the synthesis model (3) for signal reconstruction, an
alternative way to reconstruct s is given via

s? = arg min
s∈Rn

g(Ωs)

subject to ‖As− y‖22 ≤ ε, (5)

which is known as the analysis model [Elad et al., 2007]. In this model, Ω ∈ Rk×n

with k ≥ n is called the analysis operator and the analyzed vector Ωs ∈ Rk

is assumed to be sparse, where sparsity is again measured via an appropriate
function g. In contrast to the synthesis model where a signal is fully described
by the nonzero elements of x, in the analysis model the zero elements of Ωs
contain the interesting information. To emphasize this difference between the
two models, the term cosparsity has been introduced in [Nam et al., 2011], which
simply counts the number of zero elements of Ωs. Certainly, as the sparsity in
the synthesis model depends on the chosen dictionary, the cosparsity of a signal
solely depends on the choice of the analysis operator Ω.

Different analysis operators for image signals proposed in the literature in-
clude fused Lasso [Tibshirani et al., 2005], the translation invariant wavelet trans-
form [Selesnick and Figueiredo, 2009], and probably best known the finite dif-
ference operator closely related to the total-variation [Rudin et al., 1992].

1.2 Our contribution

Here, we propose an approach based on minimizing a time variant version of the
unconstrained Lagrangian forms of (3) and (5), which are given by

minimize
x∈Rd

fs(x) = 1
2‖ADx− y‖22 + λg(x). (6)

and

minimize
s∈Rn

fa(s) = 1
2‖As− y‖22 + λg(Ωs) (7)

respectively. In both formulations, the Lagrange multiplier λ ∈ R+
0 weighs be-

tween the sparsity of the solution and its fidelity to the acquired samples ac-
cording to the assumed amount of noise in the measurements λ ∼ ε.

Consider now a sequence of linear inverse problems whose solutions vary
smoothly over time. As an example, one may think of the denoising short video
sequences (without cut), or the reconstruction of compressively sensed magnetic
resonance image sequences, cf. [Lustig et al., 2007]. In this work, we propose
an approach to track the solutions of such time varying linear inverse problems.
Therefore, we employ preceding solutions to predict the current signal’s estimate
without acquiring new measurements. To the best of the authors’ knowledge,
this idea has not been pursued so far in the literature. The crucial idea is to
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use a discretized Newton flow to track solutions of a time varying version of (6)
and (7). We provide three practical update formulas for the tracking problem
and consider both the analysis and the synthesis model. We conclude with an
experiment by applying our approach to a short synthetic video sequence.

2 Tracking the Solutions

2.1 Problem Statement

Let t 7→ s(t) ∈ Rn be a C1-curve i.e. having a continuous first derivative which
represents a time varying signal s. Moreover, let y(t) = As(t) be the measure-
ments of s at time t. In this paper, we consider the problem of reconstructing
a sequence of signals

(
s(tk)

)
k∈N at consecutive instances of time. Instead of

estimating s(tk+1) by solving the inverse problem based on the measurements
y(tk+1), we investigate in how far the previously recovered estimates s?i of s(ti),
i = 1, . . . , k can be employed to predict s(tk+1) without acquiring new measure-
ments y(tk+1). This prediction step may serve as an intermediate replacement for
this reconstruction step or it may be employed as an initialization for reconstruc-
tion at time tk+1. Note that in our approach, we assume a fixed measurement
matrix A.

Now, consider the time variant version of the unconstrained Lagrangian func-
tions from (6) and (7), which read as

fs(x, t) = 1
2‖ADx− y(t)‖22 + λg(x) (8)

and

fa(s, t) = 1
2‖As− y(t)‖22 + λg(Ωs). (9)

For a unified notation, we use f(z, t) to refer to both Equation (8) and Equation
(9) simultaneously. Now, for a fixed time t, the gradient

F (z, t) :=
∂

∂z
f(z, t) (10)

must be zero for an optimal estimate z. Consequently, we want to find the smooth
curve z(t) such that

F (z(t), t) = 0. (11)

In other words, we want to track the minima of (8) and (9) over time. To achieve
this, we employ a discretized Newton flow, which is explained in the following
subsection.

2.2 Discretized Newton Flow

Homotopy methods are a well-known approach for solving problem (11). These
methods are based on an associated differential equation whose solutions track
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Fig. 1: Smoothly time varying z(t). Depending on the applied reconstruction
model, z(t) is either denotes the signal itself, or its transform coefficient over the
used dictionary.

the roots of F . To make the paper self contained, we shortly rederive the dis-
cretized Newton flow for our situation at hand based on [Baumann et al., 2005].
Specifically, we consider the implicit differential equation

JF (z, t)ż +
∂

∂t
F (z, t) = −αF (z, t), (12)

where α > 0 is a free parameter that stabilizes the dynamics around the desired
solution. Here,

JF (z, t) :=
∂

∂z
F (z, t) (13)

is the (n×n)-matrix of partial derivatives of F with respect to z. Under suitable
invertibility conditions on JF , we rewrite (12) in explicit form as

ż = −JF (z, t)−1
(
αF (z, t) +

∂

∂t
F (z, t)

)
. (14)

We discretize (14) at time instances tk, for k ∈ N and assume without loss of
generality a fixed stepsize h > 0. Depending on the stepsize we choose α := 1

h .
With the shorthand notation for zk := z(tk), the single-step Euler discretization
of the time-varying Newton flow is therefore given as

zk+1 = zk − JF (zk, tk)−1
(
F (zk, tk) + h

∂F

∂t
(zk, tk)

)
. (15)
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We approximate the partial derivative ∂F
∂t (zk, tk) by an mth-order Taylor ap-

proximation written as Hm(z, t). For the practically interesting cases these are

H1(z, t) = 1
h

(
F (z, t)− F (z, t− h)

)
(16)

H2(z, t) = 1
2h

(
3F (z, t)− 4F (z, t− h) + F (z, t− 2h)

)
(17)

H3(z, t) = 1
30h

(
37F (z, t)− 45F (z, t− h) + 9F (z, t− 2h)− F (z, t− 3h)

)
, (18)

see also [Baumann et al., 2005]. These approximations turn (15) into the update
formula

z?k+1 = zk − JF (zk, tk)−1
(
F (zk, tk) + hHm(zk, tk)

)
. (19)

Practically, the inverse JF (zk, tk)−1 is not accessible or infeasible to calculate,
in particular when dealing with high dimensional data. Hence for computing the
estimate z?k+1 as in equation (19), we solve

minimize
z∈Rn

‖JF (zk, tk)z− bm(zk, tk)‖22, (20)

with

bm(zk, tk) := JF (zk, tk)zk −
(
F (zk, tk) + hHm(zk, tk)

)
. (21)

Typically, linear Conjugate Gradient methods efficiently solve this linear equa-
tion, cf. [Nocedal and Wright, 2006]. Note, that this is significantly less compu-
tationally expensive than solving an individual reconstruction problem.

In the next subsection, we derive three explicit update schemes for the con-
crete problem of tracking solutions to inverse problems based on the approxima-
tions (16)-(18).

2.3 Explicit Update Formulas for the Synthesis Model

Although the previous sections are general enough to deal with any (smooth)
sparsity measure g, we want to make our ideas more concrete and employ a
concrete smooth approximation of the `p-pseudo-norm, namely

g(x) =

d∑
i=1

(
x2i + µ

) p
2 , (22)

with 0 < p ≤ 1 and a smoothing parameter µ ∈ R+. The gradient of g is

∇g(x) = p

d∑
i=1

Ei
(
x2i + µ

) p
2−1 x, (23)
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where Ei := eie
>
i and ei ∈ Rd is the standard basis vector. The Hessian of g is

given by the diagonal matrix

Hg(x) = p

d∑
i=1

Ei
( (
x2i + µ

) p
2−1 + (p− 2)

(
x2i + µ

) p
2−2 x2i

)
. (24)

Now recall, that in the synthesis model, we have

F (x, t) =
∂

∂x
fs(x, t) = D>A>(ADx− y(t)) + λ∇g(x). (25)

The derivative of F with respect to x is thus

JF (x, t) = (AD)>(AD) + λHg(x). (26)

Analogously as above, for the mth order Taylor approximation, m = 1, 2, 3, we
have

hH1(x, t) = (AD)>
(
y(t− h)− y(t)

)
(27)

hH2(x, t) = 1
2 (AD)>

(
4y(t− h)− 3y(t)− y(t− 2h)

)
(28)

hH3(x, t) = 1
30 (AD)>

(
45y(t− h)− 37y(t)− 9y(t− 2h) + y(t− 3h)

)
. (29)

This results in the explicit formulas for b1,b2,b3

b1(xk, tk) = λ
(
Hg(xk)xk −∇g(xk)

)
+ (AD)>

(
2y(tk) + y(tk−1)

)
(30)

b2(xk, tk) = λ
(
Hg(xk)xk −∇g(xk)

)
+ 1

2 (AD)>
(

5y(tk)− 4y(tk−1) + y(tk−2)
)

(31)

b3(xk, tk) = λ
(
Hg(xk)xk −∇g(xk)

)
+ 1

30 (AD)>
(

67y(tk)− 45y(tk−1)

+ 9y(tk−2)− y(tk−3)
)
. (32)

The three different explicit update formulas for the estimation of the signal at
the next instance of time follow straightforwardly as

s?k+1 = D
{

arg min
x∈Rd

‖JF (xk, tk)x− bm(xk, tk)‖22
}
, m = 1, 2, 3. (33)

2.4 Explicit Update Formulas for the Analysis Model

For the analysis model, we use the same sparsity measure g as defined in (22).
Let the analysis operator be of dimension Ω ∈ Rk×n. We use the notation
(g ◦Ω)(s) := g(Ωs) for the composed function. The gradient of g ◦Ω is

∇(g ◦Ω)(s) = pΩ>
k∑

i=1

Ei
(
(e>i Ωs)2 + µ

) p
2−1 Ωs. (34)
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As in the previous section, we have to compute the Hessian of g ◦ Ω, which is
given by the matrix

H(g◦Ω)(s) = pΩ>
k∑

i=1

Ei
( (

(e>i Ωs)2 + µ
) p

2−1 (35)

+ (p− 2)
(
(e>i Ωs)2 + µ

) p
2−2 (e>i Ωs)2

)
Ω.

Note, that in contrast to the synthesis model, here the Hessian is not diagonal.
Equation (10) reads as

F (s, t) =
∂

∂s
fa(s, t) = A>(As− y(t)) + λ∇(g ◦Ω)(s) (36)

with its derivative with respect to s being

JF (s, t) = A>A+ λH(g◦Ω)(x). (37)

Combining Equation (36) with (16)-(18) yields

hH1(s, t) = A>
(
y(t− h)− y(t)

)
(38)

hH2(s, t) = 1
2A>

(
4y(t− h)− 3y(t)− y(t− 2h)

)
(39)

hH3(s, t) = 1
30A>

(
45y(t− h)− 37y(t)− 9y(t− 2h) + y(t− 3h)

)
. (40)

The explicit formulas for b1,b2,b3 now result accordingly to the previous sub-
section. Finally, the explicit update formulas for estimating the signal are

s?k+1 = arg min
s∈Rn

‖JF (sk, tk)s− bm(sk, tk)‖22, m = 1, 2, 3. (41)

3 Experiments

In this section we provide an example that should serve as a proof of concept
of our proposed algorithm. It consists of tracking the reconstruction result of a
series of compressively sampled time varying images s(tk) ∈ Rn. The images are
created synthetically and show a ball moving with constant velocity, see Figure
2. To enhance legibility, all formulas are expressed in terms of matrix vector
products. However, regarding the implementation, we want to emphasize that
filtering techniques are used to deal with the large image data.

Considering the measurement matrix A, we chose m� n randomly selected
coefficients of the Rudin-Shapiro transformation (RST) [Benke, 1994]. The RST,
also know as the real valued Dragon-Noiselet-transformation, is used because of
its efficient implementation and due to its desirable properties for image re-
construction [Romberg, 2008]. We empirically set the number of measurements
to m = 0.2n. In our experiments we found that the number of measurements
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Fig. 2: Time sequence of synthetic test image.

does not severely affect the accuracy of the tracking algorithm, but the speed of
convergence. The larger we chose m the faster the algorithm converges.

For the reconstruction, we employ the above discussed analysis model. Therein,
the analysis operator Ω ∈ R2n×n represents a common and simple approximation
of the image gradient, which is in terms of finite differences between neighboring
pixels in horizontal, and vertical direction respectively.

We start our tracking algorithm by measuring RST coefficients at consec-
utive instances of time y(tk) = As(tk). From these consecutive measurements
we find s?k by individually solving (9) using a non-linear Conjugate Gradient
(CG) method with backtracking line-search and Hestenes-Stiefel update rule,
see [Hawe et al., 2012] for the concrete algorithm. From this, we obtain s?k+1 by
(33), using a linear CG-method. Regarding the update formula for bm, we found
in our experiments that (31) yields a good trade-off between prediction results
and computational burden.

The tracking results for our example are presented in Figure 3(b)-(f) for
p = 0.7. We use the knowledge of s(tk), s(tk−1) and s(tk−2) to iteratively esti-
mate s?k+j for j = 1, . . . , 5 only based on the update formula (33). Clearly, the
smaller j is, the better the estimation. Note that the results shown in Figure 3(e)-
(f) are solely based on previously predicted images. The green circle indicates the
position of the ball in the original images s(tk+j), j = 1, . . . , 5. It can be seen that
although the quality of the images decreases, the position of the circle is still cap-
tured adequately. As a quantitative measure of the reconstruction quality, Table

1 contains the peak signal to noise ratio (PSNR) PSNR = 10 log
(

max(s)2n∑n
i=1(si−s?i )

)
and the mean squared error (MSE) MSE = 1

n

∑n
i=1(si − s?i )2 of the estimated

signals s? to the original signals s.

A final word on the computational cost of the algorithm. Within the analysis
reconstruction model, the cost for applying the Hessian operator as defined in
(24), mainly depends on the cost of applying Ω and its transpose, since the
remaining part is just a diagonal operator that can be applied in O(n) flops.

Furthermore, we want to mention that for both signal reconstruction models
the presented algorithm does not depend on a specific sparsifying transformation
D, or analysis operator Ω, respectively. Any transformation or operator that
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s?k+1 s?k+2 s?k+3 s?k+4 s?k+5

PSNR 57.2 51.5 34.9 33.3 29.0

MSE 0.12 0.45 20.8 30.3 80.2
Table 1: Peak signal to noise ration (PSNR) in decibels (dB) and mean squared
error (MSE) between estimated signal s?k+j for j = 1, . . . , 5 and original signals
s(tk+j) j = 1, . . . , 5.

(a) s(tk) (b) s?k+1 (c) s?k+2

(d) s?k+3 (e) s?k+4 (f) s?k+5

Fig. 3: Excerpt of original image (a) and estimated images (b)-(f). The green
circle indicates the position of the ball in the original images.

admits a fast implementation e.g. the Wavelet or Curvelet transformation, or the
finite difference operator for images, can be easily used within this framework.

4 Conclusion

In this paper we present a concept for tracking the solutions of inverse problems
that vary smoothly over time. We consider the two related but conceptually
different synthesis and analysis signal reconstruction models. The tracking is
achieved by employing a discretized Newton flow on the gradient of the cost func-
tion. The approach allows us to predict the signal at the next time instance from
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previous reconstruction results without explicitly taking new measurements. One
advantage is that this prediction step is computationally less expensive than an
individual reconstruction. Furthermore, it may be employed as an initialization,
or serve as an additional prior for solving an inverse problem at time tk.
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