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Abstract. In this work, we consider block-Jacobi methods with Newton
steps in each subspace search and prove their local quadratic convergence
to a local minimum with non-degenerate Hessian under some orthogo-
nality assumptions on the search directions. Moreover, such a method
is exemplified for non-unitary joint matrix diagonalization, where we
present a block-Jacobi-type method on the oblique manifold with guar-
anteed local quadratic convergence.
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1 Introduction

Jacobi-type methods have been very successful in numerical linear algebra for the
task of diagonalizing matrices, dating back to the seminal work of Carl Gustaf
Jacob Jacobi from 1846 [1], where a scheme is presented to iteratively find the
eigenvalue decomposition of a Hermitian matrix. A characteristic feature of many
Jacobi-type methods is that they act to minimize the distance to diagonality
while preserving some predefined constraints, cf. [2] and the references therein.
Furthermore, their inherent parallelizability makes them also useful for large
scale matrix computations.

In the context of jointly diagonalizing a set of Hermitian matrices, eg. JADE
[3, 4] is a very prominent example that borrows the idea of iteratively minimiz-
ing the distance to joint diagonality by means of unitary similarity transforms.
Moreover, Jacobi-type algorithms have also demonstrated their promising per-
formance in solving the problem of blind source separation, such as [5, 6].

Block Jacobi-type procedures were developed as a generalization of standard
Jacobi method in terms of grouped variables for solving symmetric eigenvalue
problems or singular value problems [7]. In each Jacobi sweep, it is required
to solve a sequence of sub-optimization problems, which can be computation-
ally expensive or infeasible. To cope with this problem, we propose to employ
a Newton-step that approximates a solution to this sub problem. We show that
under this setting, if the predefined search directions are orthogonal with re-
spect to the non degenerate Hessian of the minimum, then the Jacobi method



converges locally to that minimum with quadratic, hence superlinear rate. We
exemplify these insights in order to develop an efficient method for the problem
of non-unitary joint matrix diagonalization (JMD), which arises in the context
of Blind Source Separation.

2 Block-Jacobi-type methods on manifolds

From a viewpoint of geometric optimization, Jacobi-type methods can be consi-
dered as a generalization of coordinate descent methods to the manifold setting.
Given some point on a manifold, Jacobi-type methods optimize a cost function
along some predefined directions in the tangent space in order to find the next
iterate on the manifold. In practice, this requires two more algorithmic ingredi-
ents: i) a map from the tangent space to the manifold, which is traditionally done
via the Riemannian exponential, but also more general concepts like retraction
have been introduced for general line search method adaptions to the manifold
setting; (ii) a practical step-size selection rule that approximates the search for
a minimizer of the restricted cost function. In the following, we provide a for-
mal setup and introduce some notations that help to make these concepts more
concrete.

Let M be an n-dimensional smooth manifold and consider the problem of
minimizing a smooth function f : M → R. Let the map µ : Rn ×M → M be
smooth and fulfill the property that µx : Rn → M, v 7→ µ(v, x) is a local
parametrization around x with µx(0) = x.1 Actually, it would suffice for µx to
be defined only in an appropriate neighbourhood of 0, but we omit this detail
for the sake of readability. In order to explain the predefined directions on the
manifold for the purpose of optimization, let Rn = ⊕iV

(i) be a vector space
decomposition of Rn into a direct sum of N subspaces Vi, with dimVi = `i. By
a slight abuse of notation, we denote by Vi ∈ Rn×`i also basis of these vector
spaces. Since µx is a local diffeomorphism, its differential map at 0

T0µx : Rn → TxM (1)

is bijective, hence the images of Vi under this map, namely V(i)
x := T0µx(Vi),

form a direct vector space decomposition of the tangent space TxM , i.e.

TxM = ⊕iV(i)
x . (2)

Note, that the restrictions of µx to subspace Vi, i.e. µx(Vi) for all i = 1, . . . , N ,
are often referred to as basic transformations. Our main result in this paper
states that Jacobi-type methods are locally quadratically convergent to a local
minimum of f , if the Hessian at this minimum is non-degenerate and if the above
decomposition of the tangent space is orthogonal w.r.t. this Hessian at the local
minimum.

In the following, we first consider the case where the V(i)
x are one-dimensional,

leading to (one-dimensional) predefined directions in the tangent-space along

1 That is, µ−1
x is a coordinate chart around x.



which optimization is performed in each step. We then consider the generaliza-
tion to higher dimensions, leading to a manifold adaption of block-coordinate
descent methods on manifolds.

2.1 Coordinate descent on Manifolds

Let us consider the case where the dimension of the Vi’s is equal to one, i.e.
`i = 1 for all i = 1, . . . n. A straightforward adaption of coordinate descent
methods to manifolds for minimizing a smooth cost function f is now as follows.
It consists of iterating sweeps, where one sweep sequentially works off all the
initially predetermined directions Vi. That is, starting from some point x ∈ M ,
we determine the local minimum2 that is closest to zero of the restricted cost
function t 7→ f ◦µx(V1t). This minimum t∗ then delivers the initial point xnew =
µx(V1t

∗) for a subsequent minimization along the next predetermined direction
µxnew

(V2t). This procedure is repeated until all directions Vi are worked off. The
Jacobi-sweep is visualized in Figure 1 and concretized in Algorithm 1.

Algorithm 1 Jacobi-Sweep on a manifold M

INPUT: initial point x(0) ∈M and and directions Vi, i = 1...n

FOR i = 1, . . . , n DO

STEP 1. Compute the local minumum t∗ with smallest absolute value of

ϕ : R→ R, t 7→ f ◦ µx(i−1)(Vit) (3)

STEP 2. Set x(i) := µx(i−1)(Vit
∗).

STEP 3. Increase i.

It can be shown that a Jacobi method, that is iterating Algorithm 1, leads to
a locally quadratic convergent algorithm, if the descent directions are orthogonal
with respect to the non-degenerated Hessian at a local minimum of f .

Theorem 1 ([8]). Let M be an n-dimensional manifold and let x∗ be a local
minimum of the smooth cost function f : M → R with nondegenerate Hessian
Hf (x∗). If the Vi := T0µx∗(Vi) ∈ Tx∗M are orthogonal with respect to Hf (x∗),
then the Jacobi method is locally quadratic convergent to x∗.

In practice, the search for a local minimum in STEP 1 of Algorithm 1 is
often infeasible. We therefore follow a different approach that is based on a one
dimensional Newton optimisation step. Similar approximations of the optimal

2 The reason why we choose a local and not a global minimum here is that for the
convergence analysis, this choice is needed to be smooth around a minimizer of the
cost function. This can only be guaranteed by choosing the nearest local minimum
along basic transformations.
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Fig. 1. Illustration of Jacobi-type method on smooth manifolds.

step size have already been used in [9, 10]. The idea is to replace STEP 1 by the
approximation

t∗ := −
(

d2

d t2ϕ(t)
∣∣
t=0

)−1
d
d tϕ(t)

∣∣
t=0

. (4)

We show in a more general result on block-coordinate descent methods in the
next section that this approximation maintains the local quadratic convergence
property.

2.2 Approximate Block-Coordinate descent on manifolds

With the established setting, it is quite easy to generalize the above line-search
methods to so-called block-Jacobi-type methods. The idea is to extend the search
for a new iterate to higher dimensional subspaces, i.e. we drop the assumption
that `i = 1. To search for a new iterate, we propose to extend the one-dimensional
Newton step (4) to higher dimensions. More precisely, for the i-th iteration within
one sweep, we consider the restricted cost function

ϕ : R`i → R, t 7→ f ◦ µx(i−1)(Vit). (5)

Note, that now t ∈ R`i and Vi ∈ Rn×`i . We denote the Hessian matrix of ϕ at 0
as Hϕ(0) and the standard gradient as ∇ϕ(0). The `i-dimensional Newton step

t∗ := −Hϕ(0)−1∇ϕ(0) (6)

is then a straightforward generalization of (4) to higher dimensions. The sweep
for a block-Jacobi method with Newton-step size is summarized in Algorithm 2.



Algorithm 2 Block-Jacobi-Sweep with Newton-step size on a manifold M

INPUT: initial point x(0) ∈M and and matrices Vi ∈ Rn×`i , i = 1...N

FOR i = 1, . . . , N DO

STEP 1. Compute the t∗ ∈ R`
i according to (6).

STEP 2. Set x(i) := µx(i−1)(Vit
∗).

We study local convergence properties of the Block-Jacobi-Sweep on a man-
ifold M with Newton-step size.

Theorem 2. Let M be an n-dimensional manifold and let x∗ be a local mini-
mum of the smooth cost function f : M → R with nondegenerate Hessian Hf (x∗).
If the subspaces Vi := T0µx∗(Vi) ⊂ Tx∗M are orthogonal with respect to Hf (x∗),
then the Block-Jacobi method which consists of iterating Algorithm 2 is locally
quadratic convergent to x∗.

Sketch of the proof. The proof is inspired by the local quadratic convergence
result for block-Jacobi methods on manifolds with an exact step-size selection
rule in [11]. It consists of essentially three steps. First, one has to show that a
local minimum x∗ is a fixed-point of the algorithm. Second, we formulate one
sweep as a map s : M 7→ M and compute its derivative at x∗. Third, we show
that this derivative vanishes if the subspaces Vi are orthogonal with respect
to the Hessian at x∗. Finally, using the Taylor Series expansion, we can then
conclude that

‖s(x)− x∗‖ ≤ C‖x− x∗‖2 (7)

for all x being close enough to x∗, which ensures local quadratic convergence of
the algorithm.

The fixed-point condition holds because Df(x∗) = 0 implies by use of the
chain rule, that ∇ϕ(0) = 0, and hence t∗(x∗) = 0 for all directions. We now
consider one step within a sweep given by

r : M →M, x 7→ µ(Vit
∗(x), x). (8)

Using t∗(x∗) = 0, the derivative of r at x∗ applied to a tangent vector ξ ∈ Tx∗M
is

Dr(x)|x=x∗ξ = D1µ(Vi(Dt
∗(x)|x=x∗ξ), x∗) +D2µ(0, x∗)ξ (9)

= D1µ(Vi(Dt
∗(x)|x=x∗ξ), x∗) + ξ (10)

where Dl denotes the derivative w.r.t. the l-th argument. So the next step is
to calculate Dt∗(x)|x=x∗ξ. Let ek ∈ R`i be the k-th standard basis vector and
denote

ξk := D1µ(Viek, x) ∈ TxM. (11)



Then the (k, l) entry of Hϕ(0) is Hf (x∗)(ξk, ξl) and the k-th entry of ∇ϕ(0) is
Df(x)ξk. Using the product rule, we have

Dt∗(x)|x=x∗ξ = −
(
DHϕ(0)−1ξ

)
∇ϕ(0)|x=x∗ − Hϕ(0)−1

(
D∇ϕ(0)|x=x∗ξ

)
(12)

The first summand vanishes since ∇ϕ(0)|x=x∗ = 0. The entries of the vector
on the right-hand side are D(Df(x)|x=x∗ξk)ξ = Hf (x∗)(ξk, ξ). It follows that if
ξ(i) ∈ Vi, i.e. if ξ(i) =

∑
k hkξk is a linear combination of the ξk, then

Dt∗(x)|x=x∗ξ(i) = −Hϕ(0)−1Hϕ(0)|x=x∗

h1,...
h`i

 = −

h1,...
h`i

 , (13)

so that, by using (10) and the fact that D1µ(Vih, x
∗) = ξ(i), the derivative

Dr(x)|x=x∗ annihilates the Vi-component of ξ. On the other hand, if ξ(i),⊥ is
such that Hf (x∗)(ξk, ξ

(i),⊥) = 0 for all k, then Dt∗(x)|x=x∗ξ(i),⊥ = 0 and thus

Dr(x)|x=x∗ξ(i),⊥ = ξ(i),⊥. (14)

This shows that the derivative of the i-th step in the Jacobi-Sweep is an orthog-
onal projection with respect to Hf (x∗) onto V⊥i . Therefore, using the fixed-point
property of x∗ and the chain rule, we conclude that

Ds(x)|x=x∗ξ = 0, (15)

which concludes the proof of Theorem 2.

Remark 1. It is worthwhile to notice that convergence of Jacobi-type algorithms
is strongly dependent on the construction of basic transformations. Local quadra-
tic convergence can only be attained, when the subspaces in the tangent space
specified by the basic transformations are orthogonal with respect to the Hessian
at a critical point. Unfortunately, both characterization of the Hessian at critical
points and construction of computationally light basic transformations are non-
trivial tasks in general.

3 Applications in Signal Separation

In order to investigate performance of the theoretical results presented in the last
section, we employ the problem of joint matrix diagonalization as an illustrative
and important example. Given a set of m×m real symmetric matrices {Ci}ni=1,
constructed by Ci = AΛiA

>, for i = 1, . . . , n, where Λi = diag
(
λi1, . . . , λim

)
∈

Rm×m with λij 6= 0 for j = 1, . . . ,m and A ∈ Gl(m). The problem of estimating
the matrix A given only the set {Ci}ni=1 leads to finding an X ∈ Gl(m) such
that the matrices Yi = X>CiX are simultaneously diagonalised. In a generic
situation, a joint diagonalizer X can only be determined up to column-wise
permutation and scaling, i.e. if X is a diagonalizer, so is any XDP where D



is an m×m invertible diagonal matrix and P an m×m permutation matrix,
cf. [12] for a uniqueness analysis of non-unitary JMD. To deal with the scaling
ambiguity, we restrict the solutions to the oblique manifold, i.e.

OB(m) :=
{
X∈Rm×m|ddiag(X>X) = Im, rankX = m

}
, (16)

where ddiag(Z) forms a diagonal matrix, whose diagonal entries are just those
of Z, and Im is the m×m identity matrix.

We employ the popular off-norm function for measuring the diagonality of
matrices, i.e.

f : OB(m)→ R, X 7→ 1

4

n∑
i=1

∥∥∥ off(X>CiX)
∥∥∥2
F
, (17)

where off(Z) = Z − ddiag(Z) is a matrix by setting the diagonal entries of Z to
zero, and ‖·‖F is the Frobenius norm. In order to develop a block Jacobi algorithm
to minimise the cost function f , we recall firstly a local parameterisation on
OB(m). Let us denote the set of all m×m matrices with all diagonal entries
equal to zero by

off(m) =
{
Z ∈ Rm×m|zii = 0, for i = 1, . . . ,m

}
, (18)

then, for every point X ∈ OB(m), the following map

µX : off(m)→OB(m), Z 7→X(Im+Z) diag
{

1
‖X(e1+z1)‖ , . . . ,

1
‖X(em+zm)‖

}
, (19)

where Z = [z1, . . . , zm] ∈ off(m) and ei is the i-th standard basis vector of Rm, is
a local and smooth parameterisation around X. Let us define the set of matrices,
whose entries are all zero except the (i, j) and (j, i) position, as

Vij :=
{
Z = (zij) ∈ Rm×m|zpq = 0, for (p, q) /∈ {(i, j), (j, i)}

}
, (20)

with ⊕i 6=jVij = off(m). We denote

Vij(X) := { d
d t µX(t · Z)|t=0 |Z ∈ Vij}, (21)

being a predefined vector space decomposition of the tangent space TXOB(m),
i.e. TXOB(m) = ⊕i 6=jVij(X).

The results in [4] have shown that the subspaces Vij(X∗) are orthogonal
with respect to Hf (X∗), hence validate the feasibility of construction of a block
Jacobi algorithm with Newton step size selection that is locally quadratically
convergent to an exact joint diagonalizer.

The task of our experiment is to jointly diagonalize a set of symmetric ma-
trices {C̃i}ni=1, constructed by

C̃i = AΛiA
> + εEi, i = 1, . . . , n, (22)

where A ∈ Rm×m is a randomly picked matrix in OB(m), diagonal entries of
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Fig. 2. Convergence properties of the proposed block Jacobi algorithm.

Λi are drawn from a uniform distribution on the interval (9, 11), Ei ∈ Rm×m

is the symmetric part of an m ×m matrix, whose entries are generated from a
uniform distribution on the unit interval (−0.5, 0.5), representing additive noise,
and ε ∈ R is the noise level. We set m = 5, n = 20, and run six tests in
accordance with increasing noise, by using ε = d× 10−2 where d = 0, . . . , 5.

The convergence of algorithms is measured by the distance of the accumula-
tion point X∗ ∈ OB(m) to the current iterate Xk ∈ OB(m), i.e. by ‖Xk−X∗‖F.
According to Fig. 2, it is clear that our proposed algorithm converges locally
quadratically fast to a joint diagonalizer under the exact nonunitary JMD set-
ting, i.e. ε = 0, while with presence of noise, the algorithm seems to converge
only linearly.
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1. Jacobi, C.G.J.: Über ein leichtes verfahren, die in der theorie der säcularstörungen
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