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Abstract. Over the past century there has been a dramatic increase in the con-
sumption of resources such as energy, raw materials, water, etc. in the manu-
facturing domain. An intelligent resource monitoring system that uses structural,
context and process information of the plant can deliver more accurate monitor-
ing results that can be used to detect excessive resource consumption. Recent
monitoring systems usually run on a central unit. However, modern plants re-
quire a higher degree of reusability and adaptability which can be achieved by
several monitoring units running on decentralized autonomous devices that allow
the components to monitor themselves.
To integrate structural, context and process information on such autonomous de-
vices for resource monitoring, semantic models and rules are appropriate. This
paper will present an architecture of a decentralized, intelligent resource moni-
toring system which uses structural, context and process knowledge to compute
the state of the individual components by means of models and rules. This archi-
tecture might also be used for other manufacturing systems such as diagnostic or
prognostic systems.

1 Introduction

An efficient use of resources in industrial plants is becoming increasingly important.
Plant engineers have to be aware of the resource consumption – e.g. energy, raw ma-
terials, water, compressed air, etc. – of their plants on the level of the incorporated de-
vices so that they are able to optimize the plants’ structure and processes accordingly.
A resource monitoring system (RMS) is needed to use resources efficiently. Nowadays,
monitoring systems run on a central unit that collects all sensor data of the plant to
compute the monitoring states of the different components. But modern plants require a
higher degree of reusability and adaptability and thus a decentralized monitoring system
where components are able to monitor themselves by means of intelligent autonomous
devices such as active digital product memories (ADPMs). The advantage of such a
decentralized system with ADPMs are manifold: (1) the manufacturer can produce in-
telligent components that can monitor themselves, using his extensive knowledge about
his products, (2) the components can also execute additional monitoring rules defined
by the plant engineer, (3) an exchange of single components does not require modifi-
cation of the entire system and downtime, (4) failure of one unit of the RMS will not
affect the operation of the entire RMS.
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A RMS is more advanced as usual Condition Monitoring Systems and requires
not only measurement of sensor data, but also an awareness of the components’ envi-
ronment and situation. This additional information is stored in models which explicitly
store knowledge about the plant structure, the process steps and the plant context. Thus,
it gets possible to reuse this information and new monitoring systems can be defined
with lower effort.

The objective of this paper is to describe the architecture of a monitoring system
implemented on ADPMs that combines structural, process and context information to
allow a manual optimization of the control system of the plant. Especially, research to
build a monitoring system with explicit knowledge-based models and logical rules [3]
is derived from the experiences gained during design of an application scenario of an
industrial plant within the RES-COM project [2]. This research project aims to auto-
matically conserve resources in industrial plants through ADPMs and context-aware
embedded sensor-actuator systems.

In this paper we introduce the system architecture of the monitoring system. Then,
a detailed description of the structure, process and context information is given. Finally,
we show first results with an application scenario addressing issues that can be solved
by our system.

2 Related Work

The technologies that are relevant to our research fall in three categories: knowledge-
based monitoring systems, industrial applications with DPMs (active and passive digital
product memories) and automation systems using structural, context or process knowl-
edge.

Typical knowledge-based monitoring solutions focus either on specific applica-
tion areas (e.g. electro hydraulic linear drives [14]) or on the deployment of certain
tools or methods (e.g. computational intelligence methods [17]). Our goal of research
is to develop a generic, tool- and facility-independent RMS. The authors in [11] de-
scribe how a generic data exchange format can be used for an automatic configuration
of a production monitoring and control system. But the usage of a data exchange format
such as CAEX requires tool support. Currently, no wide-spread commercial tool sup-
ports CAEX directly or via converters. Some dedicated tools, e.g. the AutomationML
Editor of Zühlke Engineering AG [7], offer currently only basic features.

Several industrial applications use DPMs to attach relevant information to plant
products or components. In [15] the authors describe how to attach life cycle infor-
mation to an industrial product to allow an information handover via several stages of
the value chain with potentially different stakeholders. One of the stakeholders is the
plant engineer. Based on this approach, he can extract the monitoring characteristics
of an industrial product out of the life cycle information stored on the component. The
authors in [13] present a flexible approach for product-driven manufacturing using a
digital product memory. This flexible approach describes a scenario in which the DPM
is attached to the product to control the environment and influence the entire production
process. The main ideas of the existing approaches based on DPMs were continued and
enhanced to define the architecture of the RMS.
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A considerable amount of literature has been published on automation systems
that use either structural, context or process knowledge or even a combination of them.
A plant-wide diagnosis systems is presented in [4] using process knowledge in addition
to structural knowledge. An infrastructure which describes context modeling concepts
for pervasive computing systems was proposed by [8]. We discovered that much of the
work in the field of context awareness [1] is concerned with providing either a frame-
work to support the abstraction of context information from the field level of the plant
or high-level models of context information to provide context services. Our approach
combines these two levels to provide more accurate context information to the monitor-
ing system. All the studies reviewed so far, however, are not combining all knowledge
about the plant to efficiently use them for monitoring.

3 System architecture

Monitoring of resources in a production plant requires sufficient information granularity
and clearly structured data to compute reliable monitoring states of components. One
of the main advantage of our architecture compared to the current state-of-the-art is
its decentralized character. This means that the manufacturers of components produce
intelligent components that can monitor themselves. The main modules of the RMS as
shown in figure 1 are:

1. Every component in the plant is equipped with an ADPM including a monitoring
unit (MU). An ADPM consists of a knowledge base that contains knowledge about
the plant in a machine processable way, including a rule base. For our monitor-
ing purpose, we distinguish between three kinds of input, 1) structural information
about the plant, e.g. motor is monitored by a temperature sensor and a smart meter,
2) current process step, e.g. conveyor that is driven by the motor is executing pro-
cess “transport at maximum speed”, 3) context information of the plant, e.g. plant
is producing at half load. This input and the knowledge-based models and rules
are then used by an inference engine in the monitoring unit which computes the
component state.

2. Collections of components are combined to groups. Every group has its own de-
centralized MU which takes the individual component states as input to compute a
composite state of the group.

3. The heart of the system is the monitoring unit of the industrial plant. It gets compo-
nent and group states as input to compute the state of the entire plant. A knowledge
base editor assists here in the addition of new knowledge from the plant engineers
and performs consistency checks on the updated knowledge base.

4. The plant monitoring state computed by the MU of the plant is provided to the
plant engineer. Based on the resulting states provided by the monitoring system the
plant engineers react to optimize the resource efficiency of the entire plant. Thus,
the control system of the plant has to be adapted in order to optimize the parame-
terization of the components and the control procedures. The control procedure in
form of a service orchestration (section 3.2) provides a high degree of adaptability
so that adaptations can be realized with low effort [10].
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Fig. 1: Architecture of the monitoring system

In the following sections we’ll describe the different input information needed for
the monitoring task in more detail.

3.1 Structural information

To allow reusability and extensibility the structure model of an industrial plant has to
be able to include all knowledge of previous knowledge-bases such as wide-spread
modeling tools (e.g. Siemens COMOS) and additional knowledge.

The structure model defines two kinds of fundamental information: (1) the taxon-
omy identifies and names element classes and arranges them into a classification hierar-
chy and (2) the plant topology describes the containment hierarchy of plant components
as defined by the part of relation and other functional relations between components as
connected to or energy flow.

The component models also contain individual characteristics of the components
including default parameters, e.g. nominal energy, monitoring thresholds and configu-
ration parameters. The default parameters and default monitoring thresholds are stored
by the manufacturer of the components on their ADPMs. During plant design, the plant
engineer configures the individual components according to the plant environment and
stores the configuration parameters on their ADPMs.

3.2 Process information

To determine the monitoring state of components, the current process of the component
or remote components has to be considered. The required process information can be
divided in two parts: a model of the production process and the dynamic information
about the current process state. Today, this information is contained implicitly in the
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control procedures of the process control devices like programmable logic controllers
(PLCs). Since the control procedures of these controllers are generated on a low im-
plementation level, where the individual binary in- and outputs are processed, the code
is complex and monolithic. Due to this the control procedure lacks of clarity, compre-
hensibility and adaptability. Therefore, this procedure should be developed on a higher
abstraction level such as service orchestration [16].

This means that functions of the hardware components are regarded as services
that represent the building blocks for the execution of the production process. To get
an executable control procedure the services have to be arranged within a process logic
in a formal representation The process logic contains states and state transitions with
links to the respective services. Thus, the model of the production process stored in the
knowledge base can be derived directly from this process logic. During run-time, the
control system has to indicate the current active process step and provide process values
and dynamic information to the monitoring unit.

3.3 Context information

To monitor the resource consumption of a production plant or its components, it is
not enough to observe just the actual consumption values. An assessment whether the
measured values are within acceptable range often depends on the context, for example
what kind of product the machine is currently producing or what the average energy
consumption was for the last products. To determine the current resource situation of
the plant, this additional information has to be evaluated continuously and has to be
represented in the underlying monitoring rules.

According to [6], context “is any information that can be used to characterize the
situation of an entity. An entity is a person, place or object that is considered relevant
to the interaction between a user and an application.”. A monitoring system can make
more intelligent decisions and determine more accurately the situation of the monitored
item if additional information (=Context) is provided about all entities that are in some
way relevant to the current monitoring task.

In our RMS, the plant components and their monitoring units are supplied with
context information from a central server, the context broker, that collects the context
information from all participating sources in the plant. The context broker supports
several protocols (e.g. OPC UA, Web services, REST) to call the technical interface of
the ADPM, read the enabled variables and store the values in its internal database. The
individual MUs can request and register all context information that is relevant to their
specific monitoring task according to their underlying context and situation model. This
context information is used by the MUs to compute the individual monitoring state of a
component or a group of components.

3.4 Decision support system

The monitoring units of the components contain a knowledge base with a rule base
and an inference engine. Together they form a decentralized decision support system
(DSS). The MU uses the structure, process and context models to annotate sensor data
semantically and computes the state of the component. For example, take a group g1
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that contains a smart meter sm1 that measures the energy consumption of a motor m1
and reports a value of 50. Then MU of g1 annotates this as “motor m1 has an energy
consumption of 50kW that is within acceptable range”.

We distinguish between two kinds of rules: (a) rules that infer the states of sin-
gle components, (b) composite rules that infer the states of groups including context
and process information. The simplest case of (a) is to use thresholds stored by the
manufacturer of the components on the ADPMs to compute the current state.

For composite components or groups, the system computes composite rules, a
simple example for case (b) is if one of the motors in the motor group G has the state
“error” then the state of G is “error”. Then the DSS provides the states of the groups
and the annotated data to other composite monitoring units and finally it computes the
state of the entire plant.

4 Application Scenario

In the context of the RES-COM project, we will implement the RMS on an intelligent
plant which produces smart key finders as shown in figure 2. We build a simulation tool
based on this application scenario. Let us consider a concrete simulation of the moni-
toring approach, using the transportation block as example. The transportation block of
the plant is used to transport the smart key finder on two conveyors cv1 and cv2 which
are both running with the same constant speed. The two conveyors are driven by the en-
gines m1 and m2 respectively. The entire transportation unit is grouped in the functional
drive group g.

Fig. 2: Smart key finder production plant

In our simulation tool, a plant engineer can enter monitoring rules in a user inter-
face as shown in figure 3. Parameters of the plant components, e.g. the resistance of the
motor m1 can be addressed with “m1.R”. Thus, the plant engineer can insert complex
equations.

Simple rules monitor thresholds of components which are stored by the manu-
facturer on the ADPMs, e.g. the maximum input power of the motor m1 is 500W. Ad-
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ditionally, the process information is considered. The drive group G can execute three
different processes: a) drive forward, b) drive backward, c) stop. In this application sce-
nario, we can use the process information to compute the standby voltage Vs of the
group g. When the motor is in process “stop” a small standby voltage is acceptable.

A special feature of the plant is that the operator of the plant can choose between
two production contexts: a) produce with lowest energy consumption, b) produce with
minimum delivery time. If the operator chooses the first option (low energy), the en-
gines’ rotational speed is adapted to reach the maximum energy efficiency and the two
conveyors run at a lower speed. If the operator chooses the second option (min delivery
time), the engines’ rotational speed is adapted to its maximum.

The knowledge-based models were stored in OWL axioms which allows infer-
ence mechanisms. We used Prolog as inference engine which stands for programming
in logic. The rules are processed by the inference engine and finally, the resource mon-
itoring system presents the resulting monitoring states to the plant engineer.

Fig. 3: Resource monitoring rule interface (R = resistance, Ug = measured voltage, Us = standby
voltage, pi = π, M = torque, n = rotational speed)

5 Conclusion

In this paper, we have presented a decentralized architecture of a resource monitoring
system. In our research, the aim was to describe how structural, process and context
models and monitoring rules on ADPMs can be used to provide a high degree of adapt-
ability and reusability. As a result, we implemented the resource monitoring system for
a smart key finder production plant based on the proposed architecture.
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