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Abstract: Industrial alarm systems inform the operator of abnormal plant behavior and are required to
guarantee safety, quality, and productivity of the plant. However, modern alarm systems often produce
large amounts of false or nuisance alarms which leads to alarm floods. Operators receive far more alarms
than they can handle. To reduce these alarm floods, we developped an alarm system that performs
Root Cause Analysis (RCA) upon an alarm model constructed with Bayesian networks. In this paper,
we present methods to construct Bayesian networks for RCA with a knowledge-based and a machine
learning approach. Finally, we evaluated both approaches with an example of an industrial plant and
propose an architecture to combine both approaches.

1. INTRODUCTION

Fault detection in industrial plants has been a very active field
of research Izadi et al. (2009). Alarm systems were designed to
raise an alarm when a fault is detected. Operators often receive
false or nuisance alarms and thus far more alarms than they
can handle. The operator is distracted and might ignore critical
alarms. An example for such a critical situation is an explosion
that occurred in the Texaco Milford Haven Refinery in 1994,
which cost the lives of four workers Adnan et al. (2011). This
accident could not be prevented, although the alarm system was
intact. The operators faced an alarm flood of 275 eleven minutes
prior to the explosion; a number impossible to cope with. To
avoid these situations, the amount of false or nuisance alarms
has to be reduced by alarm systems.

Our aim is to reduce such false or nuisance alarms with an
alarm system that performs Root Causes Analysis upon an
alarm model. Root Cause Analysis is based on the assumption
that a problem is solved and prevented from recurrence if the
root cause is identified and eliminated Rooney and Heuvel
(2004). For the alarm model, we considered Bayesian networks,
because they allow to model conditional dependencies and thus
to identify root causes with their probability of occurrence.

To handle the problem of alarm flooding, the best solution is
the radical redesign of the alarm system. But redesign is expen-
sive and error prone due to manual changes. Besides, modern
plants are a complex network of devices which are subject to
frequent modifications. Consequently, the entire alarm system
has to change to a dynamic one which is highly reusable and
extensible.

Knowledge-based approaches offer the required properties. For
this reason, we used the knowledge-based approach to build a
knowledge-based Bayesian network model where rules can in-
fer the root causes. But current knowledge-based alarm system
have several drawbacks, they are language dependent, hardly
scalable and the development is time and effort consuming. To
cope with these issues, our aim is to combine the knowledge-

based approach with the strengths of a machine learning ap-
proach to define a high-performance alarm system. A machine
learning approach is used to perform supervised learning of
Bayesian networks from existing alarm data.

The goal of this paper is the development of a reusable, extensi-
ble alarm system that reduces the redundancy of alarms to avoid
alarm flooding and that supports the operator in his decision-
making task by providing the root causes of alarms and their
probabilities of occurrence.

In the following section, we first introduce the basics of alarm
models, in particular Bayesian networks. In Chapter 3, the
knowledge- and the machine learning approach are presented.
In Chapter 4, we evaluate our results on a small case study from
process automation. Chapter 5 proposes an architecture for the
alarm system and concludes.

2. METHODS

Alarm flooding is an extraordinary plant state, where the rate
of incoming alarms exceeds the human reception capacity; the
operator is overtaxed and as a result not able to make diagnoses
and take actions in required response time Izadi et al. (2009);
Kondaveeti et al. (2010). Sequential structures of alarms can
be modelled with causal networks to analyze how such alarm
floods evolve. Causal networks are directed acyclic graphs
(DAGs) that consist of a set of nodes (domain variables) and
a set of directed links (relations) between the nodes. The links
are of causal nature, which means they lead from cause to
effect Jensen and Nielsen (2007).

Figure 1 shows an example of an alarm flood. Only the first
alarms of an alarm sequence are of interest for the operator. An
alarm without predecessor is called root alarm. These alarms
are root causes for all other alarms in a network.

Bayesian networks (BNs) enhance causal networks with proba-
bilities. This feature makes them an excellent tool for reasoning
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Fig. 1. Example of an alarm flood: The arcs depict the depen-
dencies between the alarms. Alarm 1, 5 and 6 are root
alarms. All other alarms are consequences of these three
alarms.
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Fig. 2. A simple BN with two root nodes A1 and A2 and three
conditioned nodes A3, A4 and A5.

under uncertainty and offers our system the possibility to iden-
tify root alarms with their probability of occurrence.

A BN B = (G,P) graphically shows the relationship between
random variables of a probability distribution P as specified
by Kjaerulff and Madsen (2008). The representation of the
network structure is a DAG G = (V, E), where V denotes the
set of vertices and E the set of edges of the graph structure. Each
vertex vi ∈ V corresponds to a random variable Xvi in XV for
all i = 1, . . . , n. Each edge is a directed link between two
vertices, which represents a conditional dependency of these
vertices.

The joint distribution P over the entire network can be factor-
ized as

P (XV) =
n∏

i=1

P (Xvi |Xpa(vi)),

where Xpa(vi) denotes a set of parent variables of the variable
Xvi . This is the chain rule for BNs or Markov assumption.
Figure 2 depicts a BN of five vertices.

In general, Bayesian networks can be inferred or learned. To
infer a BN, we defined a knowledge-based approach which
requires a set of facts and axioms and reasoning mechanism.
To learn a BN, we implemented a structure learning approach
which requires alarm data with relevant statistical structure.

2.1 Infering Bayesian Networks

The knowledge describing an industrial plant, that is to be mod-
eled, is provided by system experts, the operator, and system
documentation in form of data sheets, operator handbooks, or
piping and instrumentation diagrams (P&IDs). It is referred to
as expert knowledge. The expert knowledge is in a raw state.
It is scattered, unsorted, and unstructured, and needs to be pro-
cessed which is the main task of the knowledge engineer. The
knowledge engineer can apply two useful and complementary
analysis techniques from the field of Reliability Engineering to
collect and structure the expert knowledge: Failure Mode and
Effect Analysis (FMEA) and Fault Tree Analysis (FTA) Pradhan
et al. (2007).

Component Alarm

hasAlarm

Fig. 3. Graphical representation of the three main elements
of an OWL-ontology: individuals (diamonds), properties
(links), and classes (circles).

A knowledge-based alarm system that assists the operator in
decision-making requires three main components: a knowledge
base containing the structured expert knowledge and rules,
an inference engine which processes the rules, and a user
interface to enable the interaction with the operator. These
components must satisfy a number of basic requirements which
are summarized in the following.

The knowledge base should

• be extensible,
• appropriately represent uncertain knowledge

The inference engine, should automatically and rapidly draw
inferences from a knowledge base.

The user interface should be intuitive to use and flexible con-
cerning new knowledge.

Main tasks of a knowledge engineer is to collect, structure, and
model the expert knowledge to create a knowledge base. These
tasks require a close communication between the knowledge
engineer and the expert and a free access to system documenta-
tion.

The expert, for his part, has to check the final model for plau-
sibility. Hence, both the process of modeling and the process
of evaluation rely on the expert’s knowledge, experience, and
opinion.

Based on these requirements, we evaluated appropriate tools.

Ontologies Ontologies are semantic data models that repre-
sent the knowledge about a domain through classes, individu-
als, and relations. They can be interpreted as more-structured
and detailed dictionaries that specify the domain vocabulary
and its proper usage Gruber (1993).

To give an example, we define a class Component and a
class Alarm and concrete class objects, called indivduals con-
nected with the directed link hasAlarm as shown in Figure 3.
Ontologies create a common understanding of the terms and
relations applied in a certain domain upon which knowledge
sharing is possible. Moreover, an ontology is extensible and
makes knowledge reusable Noy and McGuinness (2001).

Ontologies in OWL store axioms which allows inference mech-
anisms. However, ontologies lack a direct way to express un-
certain knowledge. Therefore, we inserted rules to act along the
knowledge stored in the ontology to derive new facts.

Rule engine To built a Bayesian network based on the expert
knowledge, we used Prolog as inference engine. Prolog stands
for programming in logic (Bratko, 2012, p. 20 ff). Facts and
rules define relations between objects and form the knowledge
base of every Prolog program.

Bratko developed an interpreter for BNs, a Prolog program
that computes conditional probabilities in BNs (Bratko, 2012,



A1

A2 P(A2| A1)

P(A1) parent(a1, a2).

p(a1, 0.04).
p(a2, [a1], 0.75).
p(a2, [not(a1)], 0.20).

Fig. 4. Simple BN example and the corresponding Prolog code.
The Prolog code separately comprises the qualitative and
quantitative part of the BN.

Table 1. Examplary dataset for structural Bayesian
Learning

case A1 A2 . . .

1 1 low . . .
2 2 medium . . .
3 ? high . . .
4 2 ? . . .
5 3 high . . .
...

...
...

p. 378 ff). The basic module of this interpreter is the Bayes
formula. We extended this interpreter by adding inference rules
to determine the root causes of alarms and their corresponding
probabilities of occurrence.

This interpreter is referred to as extended Bratko interpreter.
Our interpreter requires a knowledge-based model (e.g. an
ontology) that contains the structure and the parameters of a
BN as shown in Figure 4.

2.2 Learning Bayesian Networks

This section focuses on an approach to learn a Bayesian model
with relevant statistical alarm data. In contrast to the previous
approach, no additional expert knowledge is required for the
learning task.

Our interest concerns the structure of the alarm sequences
to identify the required root alarms. Therefore we evaluated
several algorithms for structure learning on Bayesian networks.

Structure Learning A dataset D for structure learning of
Bayesian networks should have a schema as shown in Table 1
and contains categorical data. The rows of this dataset are called
cases. In such a case, a value is assigned to each variable
Ai ∈ XV . Ai represents a single alarm in the plant.

Several requirements were identified and used to evaulate the
structure learning algorithms. (1) The alarm dataset must satisfy
several assumptions according to Spirtes et al. (2000):

• The set of observed variables is causally sufficient.
• Every case has the same causal relations among variables.
• There are no dependencies between cases.
• The underlying probability distribution P is faithful to an

acyclic directed graph of the causal structure.

These assumptions may be violated, e.g. if the dataset does not
have sufficient cases.

(2) The number of variables have to be in the adequate range.
The article Robinson (1977) proposes a recursive equation

f(n) =

n∑
i=1

(−1)i+1

(
n

i

)
2i(n−i)f(n−i), with f(1) = 1 (1)

which calculates the number of possible DAGs as a function
of the number of nodes in the BN. The increasing number of

variables in a network leads to a super-exponential growth in
f(n). This clarifies the difficulties of finding the fitting structure
for a larger network.

(3) This requirement concerns the conditional independence
and dependence relations (CIDs), which a BN embodies. Some
learning algorithms revert this procedure and use CIDs to
recover the structure. But the fact that A is dependent of B and
C, written as A 6⊥⊥ C|B, can be derived from three different
structures, see Figure 5. Some of these structures are Markov
equivalent (Koski and Noble, 2009, p. 71f) and were learned
with identical data sets. An unambiguous assignment gets thus
impossible.

Fig. 5. DAGs of the same Markov equivalence class (Koski and
Noble (2009))

For learning the causal structure of alarm sequences, we eval-
uated if constraint-based (cb) and score-based (sb) algorithms
meet our requirements. The cb algorithms rely on the condi-
tional independences and dependences (CIDs) induced from
the data, the sb algorithms perform a search through the space
of possible DAGs and return the DAGs with the highest score
Jensen and Nielsen (2007). In an ideal setting, i.e. infinite data
and fully observed data, both approaches will recover the same
DAG Bouckaert (1995), but within a usual setting, i.e. with
a finite dataset, they might differ. Considering Equation 1 we
found that the drawback of the sb algorithm is its large search
space in BNs with multiple nodes. Heuristic search algorithms
could help here but their search might not return the original
network and gets stucked in a local optimum Steck (2001),
such that the found graph is not at all related to the real causal
structure.

An issue with the cb approach is the robustness of the algorithm
Margaritis (2003). Robustness means that a single error in
an early phase of the algorithm will entail many errors in
the final graph. But these algorithms are deterministic, have
a well-defined stopping criterion Dash and Druzdzel (2003),
and rebuild the network by searching for CIDs in the data and
find the causal relationships within the data. We decided thus to
better rely on the alarm structure learned by the cb algorithm. In
a next step, we compared several vendor-independent tools for
cb structure learning. All tools are freely available for research
purposes.

Tools for Structural Learning We considered three tools:
SMILE/GeNIe 1 , the Tetrad Project 2 , and the Weka suite 3 .

Table 2 summarizes the results of our comparison. Criteria
were the quality of reconstruction of the network structure, the
ergonomy of the GUI, and the features provided to simplify the
time-consuming preparation of the dataset. Additional features,
such as libraries and software licenses, were considered as
further criteria. These features are important to integrate the
tools in our alarm system.

1 http://genie.sis.pitt.edu/
2 http://www.phil.cmu.edu/projects/tetrad/
3 http://www.cs.waikato.ac.nz/ml/weka/



Table 2. Comparison of vendor-independent BN learning tools.

Tetrad Weka GeNIe

Reconstruction very good errors in large networks good
GUI intuitive intuitive, but problems

with displaying larger
networks

intuitive

Functional range many cb algorithms 1 cb and several sb algo-
rithms

1 cb and several sb algo-
rithms

Requirements JRE ≥ 1.6 JRE ≥ 1.6 MS Windows
Libraries Java Java C++
License GNU GPL GNU GPL Proprietary, Freeware

Fig. 6. System architecture of the combined diagnosis system
(arrows represent the data flow). Both, expert knowledge
and data, are used to build a BN representing the alarm
dependencies.

Based on the results of the evaluation, we identified Tetrad as
best tool. Tetrad offers a variety of algorithms and showed the
best results in reconstructing the original alarm structure.

3. EVALUATION

In this section, we demonstrate in an example how to combine
the knowledge and the machine learning approach in one appli-
cation.

In a first step, the knowledge-engineer uses the input of the
operator and system documentation to define a knowledge-
based bayesian network with its plant specific rule base. The
operator can query the diagnosis system to get the root cause
of the current alarm which is inferred by an inference engine.
When a sufficient amount of alarm data is gathered, this data is
processed by a bayesian classifier. The results are then used to
refine the bayesian network. The architecture of the diagnosis
system is represented in figure 6.

We defined an appropriate tool chain for the alarm system
which is described in the following subsections. Our decisions
are based on an evaluation of the alarm system which was
conducted with a pressure tank system as shown in figure 7. The
purpose of this system is to store a pressurized fluid in tank B.
An electric powered pump transports the pressurized fluid to
the tank. Switch E is responsible for starting the engine by
activating relay D and then relay C. The pressure tank system
is equipped with two security mechanisms: time relay F and

Pressure
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Fig. 7. Setup of the pressure tank system Castillo et al. (1997).
The system stores a pressurized fluid in tank B. It consists
of eight components including two security mechanisms:
time relay F and pressure switch A.

pressure switch A. The system works properly if the pump
works for periods less than one minute; thus, time relay F
interrupts the current after 60 seconds. If the pressure in the tank
exceeds a certain threshold, pressure switch A also interrupts
the current. We focused on the failures of the components A,
B, C, D, E, and F .

3.1 Evaluation of the Knowledge-Based Approach

Table 3. Conditional probability tables of the pres-
sure tank system Castillo et al. (1997).

D F p(g|D,F )

d f 1
d f̄ 1
d̄ f 1
d̄ f̄ 0

E G p(h|E,G)

e g 1
e ḡ 1
ē g 1
ē ḡ 0

A H p(i|A,H)

a h 1
a h̄ 0
ā h 0
ā h̄ 0

C I p(j|C, I)

c i 1
c ī 1
c̄ i 1
c̄ ī 0

B J p(k|B, J)

b j 1
b j̄ 1
b̄ j 1
b̄ j̄ 0

We derived an alarm tree from expert knowledge in the system
description. The total failure K of the pressure tank system
represents the top-event for the succeeding Fault Tree Analysis
(FTA). The combination of alarms that lead to alarm k is
logically expressed by the equation

k = b ∨ c ∨ (a ∧ e) ∨ (a ∧ d) ∨ (a ∧ f).

To simplify matters, intermediate alarms (g, h, i, and j) are
added to the graph, resulting in the alarm tree of Figure 8 where
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Fig. 8. Extended alarm tree of the pressure tank system Castillo
et al. (1997).

Fig. 9. Simple graphical user interface.

the root causes stay the same. The BN represents the joint prob-
ability distribution P (A,B,C,D,E, F,G,H, I, J,K). A par-
ticular value in the joint distribution is P (a, b, c, d, e, f, g, h, i, j, k).
Applying the chain rule for BN, we get the factorization
P (a, b, c, d, e, f, g, h, i, j, k) = P (a)P (b)P (c)P (d)P (e)P (f)

P (g|d, f)P (h|e, g)P (i|a, h)
P (j|c, i)P (k|b, j)

with the prior probabilities
P (a) = 0.002, P (b) = 0.001, P (c) = 0.003,

P (d) = 0.010, P (e) = 0.001, P (f) = 0.010.

The conditional probability tables are shown in Table 3.

We expressed the BN structure and its parameters using Prolog
facts with our extended Bratko interpreter. In addition, we
created a simple graphical user interface for the pressure tank
system shown in Figure 9.

Alarm systems strongly rely on experience of the plant op-
erators. As the knowledge base combines several knowledge
sources, it allows accurate and reliable decision-support. How-
ever, pursuing a knowledge-based approach for a diagnostic
tool has two main weaknesses which are described in the fol-
lowing.

Expert Knowledge as Limiting Factor The two basic prereq-
uisites for modeling, a close communication with the operator
and a free access to system documentation, are not a matter
of course. Owing to secrecy policies, operating companies are

Fig. 10. Learned BN of the pressure tank system. The BN was
computed with Tetrad, using a datafile of 10.000 cases.
The red marked arcs were not found.

not always willing to give profound plant information to third
parties. Even if the knowledge engineer succeeds to establish
a close communication with the operator, we have to be aware
that the knowledge of operators is limited.

For instance, some causal relations between alarms might be
unknown to the operator, like in case of rare (but important)
alarms. Plus, the expert might have difficulties to insert prob-
abilities of occurrence of particular combinations of alarms.
These circumstances affect the accuracy of modeling.

Time and Effort for Modeling The knowledge engineer has
to collect, structure, and model the expert knowledge. All these
tasks are very time and effort consuming and increase with the
complexity of the industrial plant to be modeled. Furthermore,
the models are language dependent and have to be translated to
other languages if needed.

3.2 Evaluation of the Machine Learning Approach

With the machine learning approach we can benefit from sev-
eral advantages: BNs are faster to built by learning, the ap-
proach is scalable and language independent.

To demonstrate the machine learning approach, we used a BN
of the pressure tank system with the given structure (see Fig-
ure ??) and probabilities (see Table 3) and simulated different
cases. We analyzed the resulting data set with Tetrad. Figure 10
shows the resulting network for a dataset with 10.000 cases.
Except the two arrows H → I and A → I, the structure was
recovered correctly.

Usage of Expert Knowledge for Construction of Bayesian Net-
works The result, shown in Figure 10, demonstrates that
expert knowledge is still needed after the learning process to
adjust the BN. These corrections are necessary, since struc-
tural learning algorithms might be erroneous as stated in Sec-
tion 2.2.1.

Data Preparation For preprocessing and analyzing the raw
alarm data, our system requires specific knowledge about the
plant. Especially, we have to define the values an alarm variable
can take: Present and Absent or—more detailed and grouped
for a functional section— e.g. for heater ok, temperature high,
and temperature low. Article Morales-Menéndez et al. (2007)
presents an example for a similar application: The causal struc-
ture for a cutting tool diagnosis is sought so that the condition of
the cutting tool can be classified based on the measured process
variables.

Resulting advices Tests with different BNs show that the
computation time and the probability of incorrect connec-
tions between variables increases with the amount of variables.
Therefore, it is critical to construct a network based on several
hundreds of variables. As a consequence, we advice to split up



the dataset to group the alarms according to their location of
occurrence in different plant sections. In cosequence, several
BNs are generated. These BNs can then be used in an object-
oriented approach, similar to Weidl and Madsen (2003). Fur-
thermore, the computational costs of reasoning in sub-BNs are
smaller than inferring in a network of multiple variables.

4. CONCLUSION

In this paper, we separately investigated a knowledge- and
machine learning approach to address the problem of alarm
flooding. Main idea was to build an alarm model as Bayesian
Network which is used to perform Alarm Root Cause Analysis
to reduce the alarm flood. The knowledge-based approach
ideally provides accurate decision-support for the operator of
an industrial plant. However, the necessary expert knowledge
is limited. Furthermore, modeling and evaluation are highly
time- and effort-consuming. The machine learning approach
enables fast modeling and accurate parametrization of alarm
dependencies. But the preparation of the alarm data and the
evaluation of the computed alarm structure require additional
expert knowledge.

To overcome these drawbacks, we recommend a combined
procedure based on knowledge and data, shown in Figure ??.
The BN is built using the expert knowledge and alarm data. An
ontology is well-suited to store and maintain the expert knowl-
edge. On the one hand, we can derive the BN from the ontology
by applying the probabilistic framework BayesOWL Ding et al.
(2006). On the other hand, we can recover the structure of the
alarm system from the prepared data by applying a constraint-
based algorithm. The automatic combination of these two ap-
proaches towards a BN is left for future work.
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