Time-Varying Systems and
Computations

Unit 4.2

Klaus Diepold
WS 2024



QR Decomposition

For a square, full rank matrix

Orthonormal matrix

Upper triangular matrix R =

Strategy — map 7' onto R by successive orthogonal elimination steps
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Generalied Rotations

* Transformation goal
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* Properties of Rotation
RTR=1 det(R)=1
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Parametrized Reflection

* Parameterized Generalized rotation for use in QR decomposition
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* Exercise — check for properties of Generalized Rotation
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Elimination Scheme

Column by column — from the left
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Computational Complexity

* For QR decomposition of m-by-n matrix

n
2n°(m — §) floating point operations

* |dentical to Householder QR
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Generalized Rotation QR

Mostly unknown algorithm for computing QR decomposition
Numerically robust and efficient (for sequential machines)

hypthesis is that is numerically slightly better than Householder
Same computational complexity than Householder

Rotations are a group — final Q will be a rotation

Some applications require Q to be a rotation (e.g. Computer Vision)
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