

Time-Varying Systems and Computations

Klaus Diepold 02.2 WS 2024

$$x_{k+1} = A_k \cdot x_k + B_k \cdot u_k$$
$$y_k = C_k \cdot x_k + D_k \cdot u_k$$

$$\begin{bmatrix} x_{k+1} \\ y_k \end{bmatrix} = \begin{bmatrix} A_k & B_k \\ \hline C_k & D_k \end{bmatrix} \cdot \begin{bmatrix} x_k \\ u_k \end{bmatrix}$$

Block-Diagonal Representation Pt.1

Handling a complete system → state-space equations in vectorized/block-diagonalized form (State evolution equation)

Block-Diagonal Representation Pt.2

Shifting up the state vector

Shift-up operator

Shift-down operator

Block-Diagonal Representation Pt.3

Handling a complete system → output equation in vectorized/block-diagonalized form

(Output equation)

State Space Equations – Block Diagonal

Putting it all together $Z^{-1}\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{C}\mathbf{u}$ $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$

$$\mathbf{A} = \left[egin{array}{cccc} \ddots & & & & \\ & A_k & & & \\ & & \ddots & \end{array}
ight] \quad \mathbf{B} = \left[egin{array}{cccc} \ddots & & & \\ & B_k & & \\ & & \ddots & \end{array}
ight]$$

What <u>can</u> vary with time?

Input Dimension	Output Dimension	State Dimension	Matrix Matrix Dimensions Entries
m_k	n_{k}	d_{k}	$d_{k+1} \times d_k$
$ \begin{bmatrix} \vdots \\ [u_1] \\ [u_2] \\ [u_{31} \\ u_{32} \\ u_{33} \end{bmatrix} \end{bmatrix} $	$\begin{bmatrix} \vdots \\ [y_1] \\ [y_{21} \\ y_{22} \\ [y_3] \\ \vdots \end{bmatrix}$	$\begin{bmatrix} \vdots \\ [x_0] \\ \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix} \\ [x_2] \\ \vdots \end{bmatrix}$	$A = \begin{bmatrix} \ddots & & & & \\ & a_{11} & & \\ & & a_{21} & \\ & & & \\ & & & \ddots & \end{bmatrix}$

Final Remarks

LTV Systems ←→ LTI Systems

Block Diagonal Representation ←→ Frequency Domain Representation
(z-Transforms)

Time-varying systems theory allows to handle

- ... General matrices beyond Toeplitz
- ... Finite dimensional matrices
- Systems with varying number of inputs/outputs
- Systems with varying system dynamics