

Time-Varying Systems and Computations

Klaus Diepold 02.1 WS 2024

Time-Varying State-Space Equations

Basic State-Space Equations

$$x_{k+1} = A_k \cdot x_k + B_k \cdot u_k$$
$$y_k = C_k \cdot x_k + D_k \cdot u_k$$

Block Notation

$$\begin{bmatrix} x_{k+1} \\ y_k \end{bmatrix} = \begin{bmatrix} A_k & B_k \\ \hline C_k & D_k \end{bmatrix} \cdot \begin{bmatrix} x_k \\ u_k \end{bmatrix}$$

Elementary Block – Signal Flow Graph

Time-Varying State-Space Model

Causal System Model → Composition of Elementary Building Blocks

State-Space Model - Impulse Response

$$y_4 = C_4 A_3 A_2 B_1 \cdot u_1$$

Output at time k=4

Causal Impulse Response Matrix

Causal Impulse Response Matrix LTV

Time-Variant System → no Toeplitz matrix anymore

Values change along diagonals

Causal Impulse Response Matrix LTI

All A_k, B_k, C_k, D_k are identical, i.e. we have A, B, C, D for all k

→ Impulse response is back to infinite dimensional Toeplitz matrix

Finite Dimensional Matrices

LTV Theory → covers finite dimensional matrices with/without Toeplitz structure

Jacture $T = \begin{bmatrix} [\cdot] & & & & & \\ & [\cdot] & & & & \\ & & [\cdot] & & & \\ & & & [\cdot] & \end{bmatrix} = \begin{bmatrix} [\cdot] & & & & & \\ & [\cdot] & & & & \\ & & & [\cdot] & & \\ & & & & [\cdot] & \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} & \dots & T_{1n} \\ T_{21} & T_{22} & \dots & T_{2n} \\ \vdots & & & \vdots \\ T_{m1} & T_{m2} & \dots & T_{mn} \end{bmatrix} \begin{bmatrix} [\cdot] & & & \\ & [\cdot] & & \\ & & & [\cdot] & \\ & & & & [\cdot] \end{bmatrix}$

- → Matrix T is bordered by empty matrices
- → What is the theory good for?

Example: Lower Triangular Matrix

Columns of matrix T contain the time-varying impulse response

$$T = \begin{bmatrix} 1 \\ 1/2 & 1 \\ 1/6 & 1/3 & 1 \\ 1/24 & 1/12 & 1/4 & 1 \end{bmatrix}$$

 $u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$

 $y = \left[\begin{array}{c} y_1 \\ y_2 \\ y_3 \\ y_4 \end{array} \right]$

 $T \cdot u = y$

Compute

Direct State-Space Model for Matrix T

$$T = \begin{bmatrix} 1 \\ 1/2 & 1 \\ 1/6 & 1/3 & 1 \\ 1/24 & 1/12 & 1/4 & 1 \end{bmatrix}$$

6 Multiplications

5 Additions

6 Latches

Simplified State-Space Model for T

$$T = \begin{bmatrix} 1 \\ 1/2 & 1 \\ 1/6 & 1/3 & 1 \\ 1/24 & 1/12 & 1/4 & 1 \end{bmatrix}$$

5 Multiplications

4 Additions

3 Latches

Computational Savings ...

for our toy example

- ... appear to be moderate ... for a super simple example ...
- Much more impressive savings for large scale tasks
- → Any underlying structure invisible to the eye?

State-Space Model for the Inverse Matrix

$$T^{-1} = \begin{bmatrix} 1 & \mathbf{0} \\ -1/2 & 1 \\ 0 & -1/3 & 1 \\ 0 & 0 & -1/4 & 1 \end{bmatrix}$$

Bi-diagonal Matrix

→ strong (invisible) structure

Questions

- How do we find a state-space representation for a given matrix T
 - How do we determine the values/dimensions of A_k , B_k , C_k , D_k ?
- How can we identify if the matrix T exhibits an exploitable structure?
 - When can we get a low-complexity SS model for a matrix ?
- Can we estimate the complexity of SS-Model for a given matrix T?
- Can we approximate a given matrix T with a matrix T' that has a low complexity state-space model?

Matrix Inversion via State-Space Model

