
Time-Variant and Quasi-separable Systems∗

– supplementary reading –

.

QL Factorization in State Space

Klaus Diepold, Patrick Dewilde

Spring 2025

1 Inner-Outer Factorization

1.1 Task Description

We will now discuss the factorizations of a causal operator T into the product of a causal factor L and
an inner factor Q. The factor L is itself causal and also acausally left-invertible transfer function (by
definition a left-outer function and Q is a causal, co-isometric transfer function, i.e., a transfer function
with orthonormal rows, called a right-inner function.

Such a decomposition is traditionally called an inner-outer factorization for reasons that have to do with
pole and zero locations in LTI transfer functions (a topic that will not occupy us), or, equivalently, a
factorization into a minimal phase factor and a lossless factor—a terminology mostly used in electrical
engineering. This type of factorization has important applications such as Kalman filtering, least squares
optimal control and efficient system inversion.

1.2 QL Factorization

The QL-factorization of a matrix T is a powerful tool for solving linear systems of equations or linear
least squares problems as u = T †y. The QL-factorization of a given matrix T amounts to computing

T = Q · L, Q′Q = 1n, L: lower triangular.

Note that L is a lower-triangular matrix corresponding with a causal system (in contrast with conventional
QR decomposition, where R is supposed to be an upper triangular matrix. We assume that T is a tall

∗P. Dewilde, K. Diepold, A.-J. v.d. Veen. Time-Variant ans Quasi-separable Systems, Cambridge University Press, 2024

1

QL in State-Space 2

matrix (i.e. T ∈ Rm×n,m ≥ n) and that it has full column rank, i.e. detT ′T 6= 0. Having determined the
QL-factorization we can easily determine the inverse or the pseudo-inverse of T as

T † = L−1Q′, L is square, detL 6= 0

Using the time-varying state-space methodology we are interested in calculating the QL-factorization of
a given matrix T in terms of its state-space realizations directly.

The process for computing the QL factorization of T then goes as follows:

1. Determine a state space realization for T

2. Compute the QL factorization in state-space

3. Invert the factors in state-space

4. Determine (Moore-Penrose Pseudo) inverse

Note that for solving least squares problems it is not necessary to actually compute the product L−1Q′,
it is more economic to keep the factorized form an apply the matrices Q′ and L−1 subsequently to the
vector y and Q′y, respectively.

We start out with a time-varying state-space realization Σ for T , such that we can represent the coefficient
matrix as

T = D + C(1n − ZA)−1ZB, Σ =

[
A B
C D

]
.

Since T is the product of two matrices Q and L we aim at state-space realizations for them, that is we
represent both matrices in terms of state-space models

Q = DQ + CQ(1n − ZAQ)−1ZBQ, ΣQ =

[
AQ BQ

CQ DQ

]
.

L = DL + CL(1n − ZA)−1ZB, ΣL =

[
A B
CL DL

]
.

We look for a recursive computational scheme to determine the components state space in a direct way.

Figure 1 shows the computational structure we aim for, that is, this structure represents the QL-
factorization of the matrix T . To this end we need to determine the realizations for Q and for L.

1.3 Determine a State Space Realization for T

To this end we could engage the realization procedure based on the Kronecker Theorem, i.e. by factoring
the Hankel matrices into the product of observability and controllability and then read of the elements
Ak, Bk, Ck and Dk of the state-space realization. However, this computational process may require us to
compute the corresponding factorizations and the necessary inversions, which turn out to be computa-
tionally expensive. Alternatively, we can determine realizations directly by reading off the matrix entries
from T and creating a simple computational state-space structure for T as a starting point.

QL in State-Space 3

L1

L2

L3

L4

L5

Q1

Q2

Q3

Q4

Q5

u1

u2

u3

u4

u5 y5

y4

y3

y2

y1

T = Q̃N . . . Q̃2Q̃1L̃N . . . L̃2L̃1

Figure 1: State-Space Realization for the QL-Factorization of T (taken from [5])

QL in State-Space 4

1.3.1 Example 1

Consider the simple example of a 4× 2 matrix T shown in Figure 2. We can easily check that the com-
putational structure shown in the figure realizes the computation for Tu = y. The state-space realization
matrices for this structure can also be easily read off as

[
A1 B1

C1 D1

]
=

[
· 1
· t′1

]
,

[
A2 B2

C2 D2

]
=

[
1 ·
t′2 ·

]
,

[
A3 B3

C3 D3

]
=

[
1 ·
t′3 ·

]

and
[

A4 B4

C4 D4

]
=

[
· ·
t′4 ·

]
.

Figure 2: State-Space Realization for the matrix T (taken from [5])

1.3.2 Example 2

Yet another slightly more complicated example is shown in Figure 3. For this example we partition the

input vector as

[
u1

u2

]
to give us

y = T

[
u1

u2

]
,

QL in State-Space 5

where we have the corresponding partitioning of the matrix T given as

T =
[
T (1) T (2)

]
.

For each of these two matrices we assume to have state-space realizations

T (1) ⇔
[

A
(1)
k B

(1)
k

C
(1)
k D

(1)
k

]
T (2) ⇔

[
A

(2)
k B

(2)
k

C
(2)
k D

(2)
k

]
,

which can be combined into one realization matrix as

Tk =




A
(1)
k 0 B

(1)
k 0

0 A
(2)
k 0 B

(2)
k

C
(1)
k C

(2)
k D

(1)
k D

(2)
k


 .

Using this generic partitioning of the realization matrix along with the realizations determined in the
previous section we can easily read of a time-varying realization to consist of the matrices

T1 =



· 0 1 0
0 · 0 ·
· · t′1 ·


 , T2 =




1 0 · 0
0 · 0 ·
t′2 · · ·


 ,

T3 =




1 0 · 0
0 · 0 1
t′3 · · t′1


 , T4 =



· 0 · 0
0 1 0 ·
t′4 t′2 · ·


 ,

T5 =



· 0 · 0
0 1 0 ·
· t′3 · ·


 , T6 =



· 0 · 0
0 · 0 ·
· t′4 · ·


 .

1.3.3 Factored Representation

We represent the matrix T as the product

T = T̃N · T̃N−1 · T̃N−2 · · · · T̃1,

where the factors T̃k provide for an embedding of the k-th realization matrix in the form

T̃k =




Ak Bk

... 1
...

...
. . .

...
... 1

...
Ck Dk

1




.

QL in State-Space 6

y1

y2

y3

y4

[·]

[·]

T =

[·]

[·]

�
u1

·

�

�
·

u2

�

y5

y6

y = T

�
u1

u2

�

Figure 3: Direct State-Space Realization for the matrix T (taken from [5])

QL in State-Space 7

Example We can check this factorized representation for T looking at a small example for N = 4. For
the lower 4× 4 semi-separable matrix we have

T =




D1

C2B1 D2

C3A2B1 C3B2 D3

C4A3A2B1 C4A3B2 C4B3 D4


 .

We check the factored form by directly calculating

T = T̃4 · T̃3 · T̃2 · T̃1

=




A4 . . . B4

. 1

. 1

. 1
C4 D4



·




A3 . . B3 .
. 1
. 1
C3 D3

. 1



·




A2 . B2 . .
. 1
C2 D2

. 1

. 1



·




A1 B1 . . .
C1 D1

. 1

. 1

. 1




=




A4A3 . . A4B3 B4

. 1

. 1
C3 D3

C4A3 C4B3 D4



·




A2 . B2 . .
. 1
C2 D2

. 1

. 1



·




A1 B1 . . .
C1 D1

. 1

. 1

. 1




=




A4A3A2 . A4A3B2 A4B3 B4

. 1
C2 D2

C3A2 C3B2 D3

C4A3A2 C4A3B2 C4B3 D4



·




A1 B1 . . .
C1 D1

. 1

. 1

. 1




=




A4A3A2A1 A4A3A2B1 A4A3B2 A4B3 B4

C1 D1

C2A1 C2B1 D2

C3A2A1 C3A2B1 C3B2 D3

C4A3A2A1 C4A3A2B1 C4A3B2 C4B3 D4




=




· · · · ·
· D1

· C2B1 D2

· C3A2B1 C3B2 D3

· C4A3A2B1 C4A3B2 C4B3 D4



,

where we have used that A1 = [·], C1 = [·], A4 = [·] and B4 = [·], producing a zero-dimensional first
block-column and first block-row.

1.4 Compute the QL Factorization in State Space

1.4.1 Setting up the Recursion

This represents the completion of step 2 in our operational process, where we represent the matrix T as
the product

T = Q̃N · · · Q̃2Q̃1L̃N · · · L̃2L̃1,

QL in State-Space 8

where we use the notation

Q̃k =




AQ
k BQ

k
... 1

...
...

. . .
...

... 1
...

CQ
k DQ

k

1




, L̃k =




AL
k BL

k
... 1

...
...

. . .
...

... 1
...

CL
k DL

k

1




.

The state space realizations for the factors of a QL factorization can be computed by a recursive algorithm
to determine

[
Yk+1Ak Yk+1Bk

Ck Dk

]
=

[
AQ

k BQ
k

CQ
k DQ

k

] [
Yk 0
CL

k DL
k

]
. (1)

The matrices Yk and Ak have the same number of columns, DL
k and Dk have also the same number

of columns, while DL
k has full row rank. The matrices Yk or DL

k may be zero-dimensional ([·]) and
hence the matrix entry 0 may also vanish. The recursion starts out with Yk+1 = [·] and continues for
k = N,N − 1, . . . , 1.

Recall from the Lossless Bounded Real Lemma, that the inner function Q has a unitary (orthogonal)
state space realization, which amounts to

Q′Q = 1 ⇒ Σ =

[
AQ

k BQ
k

CQ
k DQ

k

]
⇒ Σ′Σ = 1.

For practical purposes we rewrite Equation 1 by bringing the factor Q to the left side to arrive at

[
AQ

k BQ
k

CQ
k DQ

k

]′
·
[

Yk+1Ak Yk+1Bk

Ck Dk

]
=

[
Yk 0
CL

k DL
k

]
.

As a result of performing this recursive computation scheme for all values of k we arrive at a realization
matrix for the lower matrix L

ΣL
k =

[
Ak Bk

CL
k DL

k

]
.

Note that this amounts to applying an appropriately chosen sequence of Givens rotations from the left
with the purpose to eliminate the 12-block and to generate the lower triangular shape on the right-hand
side of the equation. This is very similar to the conventional algorithm for computing the QR factorization
(as shown in [2]) except that we create a lower triangular matrix instead of an upper triangular. This
requires a slight change in the elimination sequence.

It is interesting to observe that computing the QR decomposition of a matrix T in state space ends up
being a QR decomposition, using the same computational tools, inheriting all the positive the numerical
properties, while being more efficient.

QL in State-Space 9

1.4.2 Details of the Recursive Computation

Working out the first steps of the recursive algorithm produces the intermediate matrices

Q̃′NT =




AQ
N BQ

N

1

CQ
N DQ

N



′

·




YN+1AN YN+1BN

1
CN DN


 · T̃N−1 · · · · T̃1 =

=




YN 0
1

. . .

1
CL

N DL
N



·




AN−1 BN−1
1

. . .

CN−1 DN−1
1



· T̃N−2 · · · · T̃1

=




YNAN−1 YNBN−1
1

. . .

CN−1 DL
N−1

CL
NAN−1 CL

NBN−1 DL
N



· T̃N−2 · · · · T̃1,

where we made us of Equation 1. Pre-multiplication with the next factor Q̃′N−1 produces the intermediate
result

Q̃′N−1Q̃
′
NT =




YN−1 0
1

. . .

CL
N−1 DL

N−1
CL

NAN−1 CL
NBN−1 DL

N



·




AN−2 BN−2
1

CN−2 DN−1
1

1



· T̃N−3 · · · · T̃1

=




YN−1AN−2 YN−1BN−2
1

CN−2 DL
N−2

CL
N−1 CL

N−1BN−2 DL
N−1

CL
NAN−1 CL

NAN−1BN−2 CL
NBN−1 DL

N



· T̃N−3 · · · · T̃1

Continuing the recursive computation will eventually produce

Q̃′1 . . . Q̃
′
NT =




Y1

CT
1 DL

1

CL
2 A1 CL

2 B1 DL
2

...
...

...
. . .

CL
NAN−1 . . . A1 CL

NAN−1 . . . A2B1 DL
N



,

which we identify as the lower factor L, since Y1 = [·] and A1 = [·].
Each individual factor Q̃i can be thought of as either a Jacobi or a Householder transformation used for
the subsequent elimination of the appropriate matrix entries.

QL in State-Space 10

1.5 Invert the Factors in State Space

In the next step we take the individual stages of the structure and determine the inverse realization by
local inversion. Once we have computed the state-space realizations for Q and L we can easily determine
the state-space realizations of the inverse systems via

ΓS
k =

[
Ak −Bk(DL

k)−1CL
k Bk(DL

k)−1

−(DL
k)−1CL

k (DL
k)−1

]
=

[
AS

k BS
k

CS
k DS

k

]
,

where we have S = L−1 and

ΓQ
k = (ΣQ

k)′ =

[
(AQ

k)T (CQ
k)T

(BQ
k)T (DQ

k)T

]
,

where the realizations ΓQ
k represent an anti-causal system. Anti-causal realization corresponds to a back-

ward recursion

xk = (AQ
k)′xk+1 + (CQ

k)′uk

yk = (BQ
k)′xk+1 + (DQ

k)′uk

k = N,N − 1, . . . 1

1.6 Determine (Moore-Penrose Pseudo) Inverse

Concatenating the inverse realizations produces the structure shown in Figure 4, which is a state space
realization for the inverse matrix T−1 given in terms of the factors QT and L−1. More accurately, the
(Moore-Penrose Pseudo) Inverse is given in terms of the product

T † = S̃N · · · S̃2S̃1Q̃
′
1Q̃
′
2 · · · Q̃′N .

Note in Figure 4 how the anti-causality of the realization for Q′ creates an upward flow of the state
signals.

Literatur

[1] G. Strang. Computational Science and Engineering. Wellesley-Cambridge Press, 2007.

[2] G. Golub, Ch. van Loan. Matrix Computations. John Hopkins, 1992.

[3] P. Dewilde, A.-J. van der Veen. Time-Varying Systems and Computations. Kluwer Academic Pu-
blishers, 1998.

[4] P. Dewilde, K. Diepold, A.-J. van der Veen. Time-Variant and Quasi-separable Systems. Cambridge
University Press, 2024.

[5] L. Tong, A.-J. van der Veen, P. Dewilde, Y. Sung. Blind Decorrelating RAKE Receivers for Long-Code
WCDMA. IEEE Trans. Signal Processing, Vol.51, No.6, pp. 1642-1655, June 2003.

QL in State-Space 11

u1

u2

u3

u4

u5y5

y4

y3

y2

y1
QT

1

QT
2

QT
3

QT
4

QT
5 S5

S4

S3

S2

S1

T † = S̃N . . . S̃2S̃1Q̃
T
1 Q̃T

2 . . . Q̃T
N

Figure 4: State-Space Realization for the (Moore-Penrose Pseudo) inverse of T (taken from [5])

