
Time-Variant and Quasi-separable Systems∗

supplementary reading

.

- Computational Tasks -

Klaus Diepold, Patrick Dewilde

Spring 2025

1 Standard Computational Tasks

1.1 Introduction

Computational Science is an important field of research that has an increasing impact in all disciplines of
science and engineering. Engineers have to study this more mathematical subject matter in order to solve
their problems. The engineering approach to problem solving also introduces characteristic viewpoints
and technically motivated questions onto computations, which may not be covered and answered in their
entirety by Mathematics. So engineers have an opportunity to contribute their own native methods to
the toolbox of computational methods. The present course is an attempt to establish such an engineering
viewpoint on scientific computation by developing system theoretic concepts and frameworks to better
understand computational issues and to find new methods and solutions, which are amenable to solving
engineering problems.

We can see three major domains, where engineers employ numerical computations for problem solving.
These three domains are

1. Numerical simulation of physical phenomena – bottom-up computations,

2. Analysis of empirical data sets – top-down computations,

3. Numerical computations embedded in a physical world – cyber-physical systems.

Each of these domains comes with its own particular mathematical structural characteristics. Also, the
computations involved and their respective implementations need to satisfy technical requirements in
order to be useful from an engineering point of view. I will discuss all three domains in a little more detail
to clarify the particularities of each domain.

∗P. Dewilde, K. Diepold, A.-J. v.d. Veen. Time-Variant ans Quasi-separable Systems, Cambridge University Press, 2024

1

Computational Tasks 2

1.2 Simulation

1.2.1 Characteristics

Simulation-based engineering work utilizes mathematical descriptions of physical phenomena, computing
the static and dynamic properties of these physical phenomena by evaluating the corresponding formulas
numerically. The mathematical descriptions come in the form of equations, which may be linear or
non-linear, the may come as any kind of ordinary differential equations or as one of many variations
of partial differential equations, depending on the problem at hand. For numerical computations these
equations need to be linearized and discretized, solutions include numerical differentiation and integration
techniques. For actually solving a numerical simulation problem we need real data for either setting the
boundary conditions (boundary value problem) or for setting the initial conditions (initial value problem).
Real data may come from application specific considerations or from real world measurements. Setting the
equations for complex phenomena often is based on relatively simple equations to describe the behavior of
elementary subsystems. A large number of such elementary subsystems are then put together to establish a
large-scale simulation for the entire system. Take circuit-simulation as an example, where the relationship
between the current and the voltage at an elementary electronic device is described by simple differential
equations. All the electronic devices comprised in an complete circuit or even chip are then combined by
Kirchhoff equations. the result is a large algebro-differential system of equations which needs to be solved
numerically.

Since large-scale computations are compiled of many elementary computational models we also refer to
this as a bottom-up approach to computational engineering.

1.2.2 Typical Application Examples

There exists a long list of application domains that employ a bottom-up strategy to numerical compu-
tations. This domain is characterized by the existence of mathematical formulas to describe the physical
behavior of elementary building elements. Typical examples are: Circuit Simulation (analog and digital),
Weather Forecast, Climate Modeling, Aerodynamics, Fluid Dynamics, Particle Physics, High-Energy
Physics, Geology, Geography, Hydrology, Structural Design, Electromagnetic Wave Propagation (Anten-
na Design), Light and matter transport (Computer Graphics) and many more.

1.3 Data-driven Science and Engineering

1.3.1 Characteristics

Engineers and scientists analyze empirical measurement data to find out some sort of relationship or
physical phenomena that is reflected in the data. This is a data-driven approach to science and engineering.
The assumption is that a underlying physical law creates structures and patterns in the data, which needs
to be identified and extracted by means of data analysis techniques. In many cases we assume that we can
apply a linear model. We can use linear models even for non-linear relations if we linearize this relation
around an operation point using a differential approach. Such an approach also requires techniques to
estimate the complexity of the models, which is often expressed in terms of the rank of a matrix or the
dimension of a dominant subspace spanned by the data samples. Georg Simon Ohm employed such an
approach to find out about the relation between current and voltage, which lead to the discovery of the
concept of resistance.

Computational Tasks 3

The matrices that we encounter in data analysis tasks are often very large, they are mostly dense matrices
(i.e. all or nearly all matrix entries are different from zero) and they may not exhibit clearly visible
structure. However, the data matrices often exhibit low-rank structures and some sort of hidden structure,
i.e. some non-trivial dependencies between the matrix entries, which is not known a priori. While the
corresponding numerical and statistical techniques have been around for some time, they are re-invented
in recent times under the label of ’machine learning’. The effectiveness of data-analytical and statistical
techniques is one aspect for research and development. The efficiency of the corresponding computations
is another aspect with high impact for practical purposes.

1.3.2 Typical Application Examples

The list of application examples in this category is growing by the minute. Some of the key words in this
context are summarized in the following list. Data Mining, Internet Search (e.g. Page Rank), Machine
Learning (supervised and unsupervised), Deep Learning, Neural Nets, Reinforcement Learning, Statistical
Data Analysis, User Studies, Analysis of Measurement Data, Predictive Data Analysis and Diagnostics
and many more ...

1.4 Cyber-Physical Systems

1.4.1 Characteristics

Many technical systems that interact with the real world contain parts of the internal workings which
are implemented in terms of a computer. Such a computer is interfacing with the real world through
sensors and actuators and are also termed ’caber-physical systems’. The physical behavior is implemented
by a numerical algorithm, which needs to be implemented on a computing platform that has restricted
computational resources (limited computational capabilities and small memory capacity. As a consequence
this type of applications requires efficient numerical algorithms, in particular if such an embedded system
shall incorporate functionalities requiring increased levels of intelligence.

1.4.2 Typical Application Examples

Mobile Communications, Automotive Applications (Driver Assistance Systems), Process Control, Aero-
nautical Control, Robotics, Automation Systems, Autonomous Systems.

2 Linear Systems

2.1 Standard Representation

We can use the equivalence between Linear Systems on the one hand and Linear Algebra on the other
hand if we want to represent such systems or if we are computing with input and output signals of linear
systems. In Figure 1 depicts a symbolic representation for an system, that takes input sequence [uk] and
produces the output sequence [yk], which is determined as the transfer operator T {·} applied to the input
sequence.

Computational Tasks 4

T {·}[uk] [yk]

Figure 1: Standard symbolic representation of a linear input-output system

Once we are dealing with linear systems, the sequences [uk] and [yk] are mapped into vectors u and y of
length m and n,

[uk] 7→ u =



...
uk−1

uk
uk+1

...

 , [yk] 7→ y =



...
yk−1

yk
yk+1

...

 ,

respectively and the transfer operator is represented as an a matrix with real- or complex-valued entries.
The standard computational problem using a matrix-vector notation is then given as

T · u = y. (1)

Note that this representation of linear systems includes static as well as dynamic systems. Any linear
system can be represented in terms of a matrix-vector product and hence the powerful toolbox of Linear
Algebra is at our disposal.

2.2 Problem Formulations

Using equation 1 we can distinguish between three different standard problems, depending on which of
the three variables are supposed to be known.

• Matrix T and vector u are known and we wish to compute the vector y. This can be seen as feeding a
linear system, which is represented by the matrix T with an input signal u and we wish to determine
the output signal y. This problem can be briefly represented as

(T, u) 7→ y.

We denote this operation as filtering.

• Vectors u and y are known and we wish to determine the matrix T from the observations of input
and output signals. This problem can be briefly represented as

(u, y) 7→ T.

We denote this operation as system identification. Looking at machine intelligence this task amounts
to supervised training a machine intelligence model, where the given u and y denote the training

Computational Tasks 5

data for identifying the parameters pertaining to the model comprised in T . It is clear that for
successfully identifying the values of all matrix entries in T we require a sufficient number of signal
pairs (u, y), e.g. to set up a system of equations such as T · U = Y , where the matrices U and Y
contain the known input/output vectors, i.e.

U =

 | | . . . |
u1 u2 . . . un
| | . . . |

 Y =

 | | . . . |
y1 y2 . . . yn
| | . . . |

 .
• Matrix T is known along with the vector y and we wish to compute the input signal that caused

the output signal y. This problem can be briefly represented as

(T, y) 7→ u.

We use the term inversion problem or signal estimation refer to this operation. Inversion problems
are very common for many engineering problems, e.g. identifying the transmitted signal u having
access to the received signal y and a model describing the transmission channel captured in the
matrix T (channel model), or de-blurring images or removing reverberation from recorded audio
signals.

3 Non-Linear Systems

Once we are considering non-linear systems we are no longer able to represent the mapping between
input u and output y in terms of a matrix. We need a more general representation for the input-output
operator T {·}. Most prominently, we will consider the non-linearities, which are introduced to neural
nets by means for non-linear activation functions.

In Figure 3 a neural network is displayed, that has one input layer, two hidden layers and one output
layer. The mapping of the input vector v0 onto the output vector v3 is represented by the nested map

F = F3(F2(F1(x, v))).

Each individual layer is given by the function Fk as

vk = Fk(vk−1) = ReLU(Tkvk−1 + bk),

where we have vk ∈ Rnk , bk ∈ Rnk and hence Tk ∈ Rnk×nk−1 . Note that this function is composed of two
parts, an affine transformation Tkvk−1 + bk followed by a non-linear activation function. For out short
exposition we just use the Rectified Linear Unit or ReLU for short, which is shown in Figure 2.

Looking at Figure 3 we can identify the necessary computations as we step through the network. These
are

T1v0 = v̂1 → ReLU(v̂1) → v1

T2v1 + b2 = v̂2 → ReLU(v̂2) → v2

T3v2 + b3 = v̂3 → ReLU(v̂3) → v3

,

where we can observe that T1 ∈ R8×4, T2 =∈ R4×8 and T3 =∈ R2×4, and b1 = 0.

The computation of the affine transformation Tkvk−1 + bk requires O(nk · nk−1) operations, as nk, nk−1

denote the number of neurons in the respective layers. For short we can summarize this a computational

Computational Tasks 6

Figure 2: ReLU - Rectified Linear Unit

task of complexity O(n2). The ReLU function needs only O(n) operations. This observation tells us that
biggest junk of computation work is done by the affine transformation. It is also necessary to store the
O(n2) parameters for the matrix Tk and the bias vector bk.

The little example shown in Figure 3 is a very modest neural net. You can easily imagine a state of the
art neural net (Deep Learning) to comprise a much larger number of layers and nodes per layer. This
is even more so as we consider convolutional neural nets (CNN), where the mapping between layers are
consisting of convolutions.

In summary, for implementing Deep Neural Nets practically, it is of interest to look for ways how to
reduce the computational requirements (arithmetic and memory).

3.1 Typical Computational Tasks

• Function F and vector v0 are known and we wish to compute the vector vN . This can be seen as
feeding a Deep Neural Net, which implements the learned function F with an input signal v0 and
we wish to determine the inference (output) signal vN . This problem can be briefly represented as

(F, v0) 7→ vN .

Of course, this setting applies to any form of inference performed by any intelligent system, e.g.
when deploying a trained Deep Neural Net, as it occurs in prediction or classification tasks.

• Vectors v0 and vN are known and we wish to determine the function F from the observations of
input and output signals. This problem can be briefly represented as

(v0, vN) 7→ F.

We denote this operation as Learning. Looking at machine intelligence this task amounts to super-
vised training a machine intelligence model F , where the given v0 and vN denote the training data
for identifying the parameters pertaining to the model comprised in F . In order to determine the
paramters making up the function F forces us to provide a large number of different pairs of v0 and
vN . For this task, the Backpropagation Algorithm is the preferred choice. Using Backpropagation
requires many function evaluations, each of which needing O(n2) operations.

Computational Tasks 7

Figure 3: Neural Network

Computational Tasks 8

4 Numerical Linear Algebra

4.1 Cost of Linear Algebra

Numerical linear algebra is composed of many elementary computations, which require arithmetic ope-
rations. The number of elementary arithmetic operations required to compute such elementary results
determine their computational complexity. The number of arithmetic operations is one measure to assess
the efficiency of a given algorithm. It is a costly effort to determine the exact operation count for a given
computation. For engineers it is often helpful to know the asymptotic complexity of an algorithm, that
is, to know how the number of operations grows with the size of the problem. The asymptotic behaviour
amounts to look for very large values of the parameter n, which describes the size of the problem to
be solved. For elementary linear algebra computations the following complexities are known, where we
assume the vector x, y to be of length n and the matrices A,B to be of size n× n:

• Inner product x′y – O(n) operations

• Matrix-vector product Ax – O(n2) operations

• Matrix addition A+B – O(n2) operations

• Matrix-matrix product AB – O(n3) operations

• Matrix inversion A−1 – O(n3) operations

For those asymptotic values we assume that the matrices involved have no particular structure that we
could exploit to reduce the amount of computations. We further assume that the matrices are of size
n× n and the vectors have corresponding sizes.

4.2 Data Sparse and Structured Matrices

In general, for a given n × n-matrices we require memory for storing n2 matrix entries. However, in
engineering applications we often encounter matrices, which are data sparse, that is, where we need
much less memory to store these matrices. Such matrices have ’structure’ or their degrees of freedom are
otherwise reduced. Simple examples for matrices with structure are symmetric or triangular matrices,
which require to store only n(n+ 1)/2 values or rotation matrices, which require only n(n− 1)/2 values.
However, these matrices still consist of O(n2) free values.

For our discussion we are considering matrices which have O(n) free parameters. While such matrices
require a reduced amount of storage space we want to find computational schemes for such matrices,
which also need only O(n) computations for e.g. matrix-vector multiplication, or O(n2) for matrix-matrix
multiplication or inversion.

Some matrices have many zero-entries such that there are O(n) non-zero entries left, which need to be
stored. There are other matrices where the matrix entries exhibit inner relationships such that only O(n)
entries need to be stored.

Computational Tasks 9

Diagonal matrices

D =


d1

d2

d3

. . .

dn


Block-diagonal matrices

D =



D1

D2

D3

. . .

Dn


,

where each block entry Di has the dimension mi × ni.

Sparse matrices

D =


d0 d1 d2

d3

d4

d5 d6 d7

d8 d9

 ,
with MathcalO(n) non-zero matrix entries di.

Toeplitz-, and Hankel-, Vandermonde-matrices

T =


t0 t1 t2 t3 t4
t−1 t0 t1 t2 t3
t−2 t−1 t0 t1 t2
t−3 t−2 t−1 t0 t1
t−4 t−3 t−2 t−1 t0

 , H =


h0 h1 h2 h3 h4

h1 h2 h3 h4 h5

h2 h3 h4 h5 h6

h3 h4 h5 h6 h7

h4 h5 h6 h7 h8



V =


1 v1 v2

1 v3
1 v4

1

1 v2 v2
2 v3

2 v4
2

1 v3 v2
3 v3

3 v4
3

1 v4 v2
4 v3

4 v4
4

1 v5 v2
5 v3

5 v4
5


All three types of structured matrices have MathcalO(n) matrix-entries, which may take on any value.

Computational Tasks 10

Low-rank matrices

A =


u1

u2

u3

u4

u5

 · [v1 v2 v3 v4 v5

]
=


u1v1 u1v2 u1v3 u1v4 u1v5

u2v1 u2v2 u2v3 u2v4 u2v5

u3v1 u3v2 u3v3 u3v4 u3v5

u4v1 u4v2 u4v3 u4v4 u4v5

u5v1 u5v2 u5v3 u5v4 u5v5


Here the 5× 5 matrix A has rank one., while the 4× 5 matrix B

B =


u11 u12

u21 u22

u31 u32

u41 u42

 · [v11 v12 v13 v14 v15

v11 v12 v13 v14 v15

]
=


B11 B12 B13 B14 B15

B21 B22 B23 B24 B25

B31 B32 B33 B34 B35

B41 B42 B43 B44 B45


has rank 2.

Band matrices

B =


b11 b12

b21 b22 b23

b32 b33 b34

b43 b44 b45

b54 b55


. . . and many more types of structured matrices, including block versions such as block-Toeplitz and
Toeplitz-block matrices

BT =


B1 B2 B3

B2 B1 B2 B3

B3 B2 B1 B2 B3

B3 B2 B1 B2

B3 B2 B1

 , TB =


T11 T12

T21 T22 T23

T32 T33 T34

T43 T44 T45

T54 T55

 ,
where Tij denote a Toeplitz matrix.

Inverses of band matrices If we consider the class of band matrices such as

B =


· ·
· · ·
· · ·
· · ·
· ·

 −→ B−1 =


· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·


we can easily identify the O(n) free parameters of B. This number of free parameters does not change
upon inversion of the matrix, i.e. B−1 still has the same O(n) free parameters. This is true even though
the inverse of a band matrix in general is no longer a band matrix but rather a dense matrix. Just looking
at a matrix, which happens to be the inverse of a band matrix does not immediately reveal this reduced
number of parameters. In other words, the inverse of a band matrix is also a data sparse matrix.

Computational Tasks 11

Summary It is fair to say that in engineering applications we mostly encounter either dense matrices,
which exhibit exploitable structure (data sparse) or we encounter sparse matrices. Most of the standard
algorithms engineering students learn in the context of signal processing are efficient versions of linear
algebra algorithms. For sparse matrices mathematicians and numerical analysts have developed a whole
suite of specialized algorithms that allow to take advantage of the sparsity of matrices.

5 Evaluation of Numerical Computations

5.1 Evaluation Criteria

When solving a problem we are faced frequently with a choice among algorithms. On what basis should
we choose? There are two often contradictory goals.

1. We would like an algorithm that is easy to understand, code, and debug.

2. We would like an algorithm that makes efficient use of the computer’s resources, especially, one that
runs as fast as possible.

When we are writing a program to be used once or a few times, goal (1) is most important. The cost
of the programmer’s time will most likely exceed by far the cost of running the program, so the cost
to optimize is the cost of writing the program. When presented with a problem whose solution is to be
used many times, the cost of running the program may far exceed the cost of writing it, especially, if
many of the program runs are given large amounts of input. Then it is financially sound to implement
a fairly complicated algorithm, provided that the resulting program will run significantly faster than a
more obvious program. Even in these situations it may be wise first to implement a simple algorithm, to
determine the actual benefit to be had by writing a more complicated program. In building a complex
system it is often desirable to implement a simple prototype on which measurements and simulations can
be performed, before committing oneself to the final design. It follows that programmers must not only
be aware of ways of making programs run fast, but must know when to apply these techniques and when
not to bother.

5.2 Runtime of a program

The running time of a program depends on factors such as:

1. the input to the program,

2. the quality of code generated by the compiler used to create the object program,

3. the nature and speed of the instructions on the machine used to execute the program,

4. the level of parallelism supported by the computational platform used for implementation, and

5. the time complexity of the algorithm underlying the program.

The fact that running time depends on the input tells us that the running time of a program should be
defined as a function of the input. Often, the running time depends not on the exact input but only on
the ßizeöf the input. A good example is the process known as sorting, which we shall discuss in Chapter
8. In a sorting problem, we are given as input a list of items to be sorted, and we are to produce as output
the same items, but smallest (or largest) first. For example, given 2, 1, 3, 1, 5, 8 as input we might wish
to produce 1, 1, 2, 3, 5, 8 as output. The latter list is said to be sorted smallest first. The natural size

Computational Tasks 12

measure for inputs to a sorting program is the number of items to be sorted, or in other words, the length
of the input list. In general, the length of the input is an appropriate size measure, and we shall assume
that measure of size unless we specifically state otherwise.

5.3 Numerical stability

(This section has been adopted from Nicholas Higham’s Blog, See also [6]))

Numerical stability concerns how errors introduced during the execution of an algorithm affect the result.
It is a property of an algorithm rather than the problem being solved. I will assume that the errors under
consideration are rounding errors, but in principle the errors can be from any source.

Consider a scalar function y = f(x) of a scalar x. We regard x as the input data and y as the output. The
forward error of a computed approximation ŷ to y is the relative error |y− ŷ|/|y|. The backward error of
ŷ is

min

{ |∆x|
|x| : ŷ = f(x+ ∆x)

}
.

If ŷ has a small backward error then it is the exact answer for a slightly perturbed input. Here, ’small’ is
interpreted relative to the floating-point arithmetic, so a small backward error means one of the form cu
for a modest constant c, where u is the unit roundoff.

An algorithm that always produces a small backward error is called backward stable. In a backward stable
algorithm the errors introduced during the algorithm have the same effect as a small perturbation in the
data. If the backward error is the same size as any uncertainty in the data then the algorithm produces
as good a result as we can expect.

If x undergoes a relative perturbation of size u then y = f(x) can change by as much as condf (x)u, where

condcf(x) = lim
ε→0

sup
|∆x|≤ε|x|

|f(x+ ∆x)− f(x)|
ε|f(x)|

is the condition number of f at x. An algorithm that always produces ŷ with a forward error of order
condf (x)u is called forward stable.

The definition of condf (x) implies that a backward stable algorithm is automatically forward stable.
The converse is not true. An example of an algorithm that is forward stable but not backward stable is
Gauss-Jordan elimination for solving a linear system.

If ŷ satisfies

ŷ + ∆y = f(x+ ∆x), |∆y| ≤ ε|ŷ|, |∆x| ≤ ε|x|,

with ε small in the sense described above, then the algorithm for computing y is mixed forward stable.
Such an algorithm produces almost the right answer for a slightly perturbed input. The following diagram
illustrates the previous equation.

With these definitions in hand, we can turn to the meaning of the term numerically stable. Depending on
the context, numerical stability can mean that an algorithm is (a) backward stable, (b) forward stable,
or (c) mixed backward-forward stable.

For some problems, backward stability is difficult or impossible to achieve, so numerical stability has
meaning (b) or (c). For example, let Z = xy′, where x and y are n-vectors. Backward stability would

Computational Tasks 13

Figure 4: Forward-Backward Error

require the computed Ẑ to satisfy Ẑ = (x + ∆x)(y + ∆y)′ for some small ∆x and ∆y, meaning that Ẑ

is a rank-1 matrix. But the computed Ẑ contains n2 independent rounding errors and is very unlikely to
have rank 1.

5.4 Sensitivity - Condition Number

(This section has been adopted from Nicholas Higham’s Blog. See also [6])

A condition number of a problem measures the sensitivity of the solution to small perturbations in the
input data. The condition number depends on the problem and the input data, on the norm used to
measure size, and on whether perturbations are measured in an absolute or a relative sense. The problem
is defined by a function, which may be known explicitly or may be only implicitly defined (as when the
problem is to solve an equation).

The most well known example of a condition number is the condition number of a nonsingular square
matrix A, which is κ(A) = ‖A‖‖A−1‖. More correctly, this is the condition number with respect to
inversion, because a relative change to A of norm ε can change A−1 by a relative amount as much as,
but no more than, about κ(A)ε for small ε. The same quantity κ(A) is also the condition number for a
linear system Ax = b (exactly if A is the data, but only approximately if both A and b are the data).

It is easy to see that κ(A) ≥ 1 for any norm for which ‖I‖ = 1 (most common norms, but not the
Frobenius norm, have this property) and that κ(A) tends to infinity as A tends to singularity.

A general definition of (relative) condition number, for a function f from Rn 7→ Rn, is

cond(f, x) = lim
ε→0

sup
‖∆x‖≤ε‖x‖

‖f(x+ ∆x)− f(x)‖
ε‖f(x)‖ .

Taking a small, nonzero ε, we have

‖f(x+ ∆x)− f(x)‖
‖f(x)‖ . cond(f, x)

‖∆x‖
‖x‖

for small ‖∆x‖, with approximate equality for some ∆x.

An explicit expression for cond(f, x) can be given in terms of the Jacobian matrix, J(x) = (∂fi/∂xj)

cond(f, x) =
‖x‖‖J(x)‖
‖f(x)‖ .

Computational Tasks 14

We give two examples.

If f is a scalar function then J(x) = f ′(x), so cond(f, x) = |xf ′(x)/f(x)|. Hence, for example, cond(log, x) =
1/| log x|. If z is a simple (non-repeated) root of the polynomial p(t) = ant

n+ · · ·+a1t+a0 then the data
is the vector of coefficients a = [an, . . . , a0]′. It can be shown that the condition number of the root z is,
for the ∞-norm,

cond(z, a) =
maxi |ai|

∑n
i=0 |z|xi

|zp′(z)| .

A problem is said to be well conditioned if the condition number is small and ill conditioned if the
condition number is large. The meaning of ’small’ and ’large’ depends on the problem and the context.
The diagram in Figure 5 illustrates a well-conditioned function f : small changes in x produce small
changes in f .

Figure 5: Well conditioned

Figure 6: Ill conditioned

The diagram in Figure 6 depicts an ill-conditioned function f : small changes in x can produce large
changes in f (but do not necessarily do so, as the closeness of f(x2) and f(x3) illustrates).

Here are a few key points about condition numbers.

• Even though an explicit expression may be available for it, computing cond(f, x) is usually as
expensive as computing f(x), so a lot of research has focused on obtaining inexpensive estimates
of the condition number or bounds for it.

• While κ(A) ≥ 1, it is not true for all functions that cond(f, x) is bounded below by 1.

• For a range of functions that includes the matrix inverse, matrix eigenvalues, and a root of a
polynomial, it is known that the condition number is the reciprocal of the relative distance to the
nearest singular problem (one with an infinite condition number).

Computational Tasks 15

6 Examples of Large-Scale Matrix Computations

6.1 Motion Analysis in Video

6.1.1 Description of Technical Task

For many applications in the domain of computer vision or in the field of digital video signal processing the
task of estimating the apparent motion of objects or pixels throughout a video sequence is a fundamental
task. Motion estimation is an expensive calculation, in particular when considering to deal with standard
definition resolution images (576 × 720 pixels per image) or moving on to even handle High Definition
resolutions (1080× 1920 pixels per image).

Optic Flow Constraint We discuss how to compute the optical flow according to the approach pro-
posed by Horn & Schunck. The brightness of a pixel at point (x, y) in an image plane at time t is denoted
by I(x, y, t). Let I(x, y, t) and I(x, y, t+ 1) be two successive images of a video sequence. Each image is
comprised of a rectangular lattice of N = m×n pixels.Optic flow computation is based on the assumption
that the brightness of a pixel remains constant in time and that all apparent variations of the brightness
throughout a video sequence are due to spatial displacements of the pixels, which again are caused by
motion of objects. We denote this brightness conservation assumption as

dI

dt
= 0.

This equation is called the optical flow constraint. Using the chain rule for differentiation the optic flow
constraint is expanded into

∂I

∂x
· dx
dt

+
∂I

∂y
· dy
dt

+
∂I

∂x
= 0.

Using the shorthand notation

vx =
dx

dt
vy =

dy

dt
Ix =

∂I

∂x
Iy =

∂I

∂y
, It =

∂I

∂t
,

the optic flow constraint can be written as

Eof = Ix · vx + Iy · vy + It = 0. (2)

Equation (2) is only one equation for determining the two unknowns vx and vy, which denote the ho-
rizontal and the vertical component of the motion vector at each pixel position. Hence the optical flow
equation is an underdetermined system of equation. Solving this equation in a least squares sense only
produces the motion vector component in direction of the strongest gradient for the texture. Therefore a
second constraint has to be found to regularize this ill-posed problem.

Smoothness Constraint To overcome the underdetermined nature of the optic flow constraint, Horn
& Schunck introduced an additional smoothness constraint. Neighboring pixels of an object in a video
sequence are likely to move in a similar way. The motion vectors vx and vy are varying spatially in a
smooth way. Spatial discontinuities in the motion vector field occur only at motion boundaries between
objects, which move in different directions and which are occluding each other. Therefore, the motion

Computational Tasks 16

vector field to be computed is supposed to be spatially smooth. This smoothness constraint can be
formulated using the Laplacian of the motion vector field vx and vy

Esc = ∇2vx +∇2vy =
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vy
∂x2

+
∂2vy
∂y2

. (3)

The Laplacians of vx and vy can be calculated by the approximation

∇2vx ≈ vx − vx and ∇2vy ≈ vy − vy.

The term vx,y − vx,y can be computed numerically as the difference between the central pixel vx,y and a
weighted average of the values in a 2-neighborhood of the central pixel. The corresponding 2-dimensional
convolution for performing this filtering operation is given as

vx(x, y)− vx(x, y) = L(x, y) ∗ vx(x, y)

vy(x, y)− vy(x, y) = L(x, y) ∗ vx(x, y),

where the convolution kernel L(x, y) is given by the filtering mask

L(x, y) =

 1/12 1/6 1/12
1/6 −1 1/6
1/12 1/6 1/12

 . (4)

Optimization of Euler-Lagrange Equations The Horn & Schunck approach uses the optic flow
equation (2) along with the smoothness constraint (3) to express the optic flow computation as the
optimization problem for the cost function

E2 = E2
of + α2 · E2

sc,

which needs to be minimized in terms of the motion vector [vxvy]T . The parameter α is a scalar regula-
rization parameter, which controls the contribution of the smoothness constraint (3). The optimization
problem finally expands into the equation

E2 = (Ixvx + Iyvy + It)
2

+ α2
(
(vx − vx)2 + (vy − vy)2

)
. (5)

Applying the calculus of variations results in the following two equations

I2
xvx + IxIyvy + IxIt − α2(vx − vx) = 0

IxIyvx + I2
yvy + IyIt − α2(vy − vy) = 0,

which need to be solved for the motion vector components vx(x,) and vy(x, y).

Computing Partial Derivatives When dealing with sampled or digital images, the partial derivatives
showing up in equations (2) need to be calculated based on using finite differences. One simple though
effective way of doing this is to compute

Ix ≈
1

4
(I[x, y + 1, t]− I[x, y, t] + I[x+ 1, y + 1, t]− I[x+ 1, y, t] + I[x, y + 1, t+ 1]

−I[x, y, t+ 1] + I[x+ 1, y + 1, t+ 1]− I[x+ 1, y, t+ 1])

Iy ≈
1

4
(I[x+ 1, y, t]− I[x, y, t] + I[x+ 1, y + 1, t]− I[x, y + 1, t] + I[x+ 1, y, t+ 1]

Computational Tasks 17

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

nz = 100

Figure 7: Structure for the Laplace Operator

−I[x, y, t+ 1] + I[x+ 1, y + 1, t+ 1]− I[x, y + 1, t+ 1])

It ≈
1

4
(I[x, y, t1]− I[x, y, t] + I[x+ 1, y, t+ 1]− I[x+ 1, y, t] + I[x, y + 1, t+ 1]

−I[x, y + 1, t] + I[x+ 1, y + 1, t+ 1]− I[x+ 1, y + 1, t]) .

This amounts to compute simple differences of intensity values along the x-, the y- and the t-direction
and taking the average of four neighboring values to arrive at the result.

6.1.2 Linear System of Equations

Based on (2), the optic flow equation for all pixels can be written as a matrix equation

[
Ix Iy

]
·
[
vx
vy

]
= −It, (6)

where Ix and Iy are diagonal matrices of size N × N and It is a vector of length N . The x- and y-
components of the motion vector field are given as the vectors vx and vy, each with the dimension N .

The effect of the convolution kernel L(x, y) on the motion vector field can be represented by a constant
and sparse N ×N band matrix L, which has Toeplitz structure. We will use the symbol C to denote the
negative Laplacian, i.e. C = −L. The specific banded structure of C is depicted in Figure 7,which can be
symbolically denoted as

C =



M U
U M U

U M U

U
. . .

. . .

. . .
. . . U
U M


.

Computational Tasks 18

0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 232
0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 232

Figure 8: Structure for original (sparse) matrix (left) and re-ordered matrix (right)

The minimization of the cost function 5 for all pixels in the image leads to the set of regularized linear
equations,(

α2

[
C 0
0 C

]
+

[
Ix
Iy

]
·
[
Ix Iy

])
·
[
vx
vy

]
=

[
Ix
Iy

]
· It. (7)

The term in brackets of equation (7) represents a 2N × 2N band matrix, the structure of which can be
seen on the left hand side of Figure 8. This structured matrix needs to be solved efficiently for computing
the motion vector fields vx and vy.

We can modify the structure of the matrix by re-ordering the variables and hence the matrix entries.
In the right hand side of Figure 8 the resulting matrix structure is shown if the variables vx and vy are
re-ordered by interleaving them. Such a change of structure for the matrix entries has influence on the
efficiency of sparse linear system solvers.

6.2 W-CDMA Rake Receiver

6.2.1 Problem description

We consider the problem of joint channel estimation and symbol detection in a long-code wideband code
division multiple access (CDMA) system that has features of third-generation wireless. The scrambling
sequences are aperiodic, data and control information may be modulated separately onto the in-phase and
quadrature parts of the signal using different channelization codes with different spreading gains, pilots
are often part of the control symbols, users may have different spreading gains, or multiple channelization
codes may be assigned to the same user. For uplink applications, users are asynchronous, and their
multipath channels may have delays longer than the symbol period. Multiple antennas may be used.

RAKE receivers are widely used in both uplink and downlink CDMA systems. If the spreading codes
have good crossand auto-correlation properties, the matched filter front-end suppresses multi-access in-
terference, and the RAKE receiver captures multi-path diversity through its diversity branches (or the
RAKE fingers). For high-rate CDMA under frequency selective fading, however, code orthogonality can
not be guaranteed, and the conventional RAKE receiver that uses a bank of matched filters may perform

Computational Tasks 19

poorly. The loss of code orthogonality has adverse effects on both channel estimation and symbol detec-
tion, and the performance degradation is especially pronounced when the network is heavily loaded and
power control imperfect.

Figure 9: receiver structure. The decorrelating matched filter is implemented by an efficient matrix in-
version method. Taken from [3].

In this section, we introduce the problem of a joint channel and symbol estimation scheme for RAKE re-
ceivers. As illustrated in Figure 9, a decorrelating matched filter projects the received chip-rate sequence
into the signal space of each user whose channel and data sequence can be estimated jointly and inde-
pendent of other users by least squares via a rank-one decomposition. The decorrelating matched filter
does not depend on channel coefficients and may be pre-computed for certain applications. The scheme
imposes no conditions on channel parameters and is capable of dealing with rapid multi-path fading.

The key point here is to find an efficient implementation of the decorrelating matched filter. The idea
of using the decorrelating matched filter for short-code CDMA is known, but applying it to long-code
CDMA presents a daunting task in terms of both computational complexity and storage requirements. A
direct implementation of a ten-user system each has three multi-path fingers with a 100-symbol slot and
a spreading gain of 64 amounts to inverting a code matrix of size around 6400 3000. The code matrix,
fortunately, is highly structured and sparse; only 1% of its entries are nonzero. The inverse of the code
matrix, however, will in general lose the structure and the sparsity.

6.2.2 Matrix Model

We introduce a matrix model for long-code CDMA. We assume that K asynchronous users transmit
linearly modulated symbols. The transmission is slotted, and user i transmits Mi symbols {sin, n =
1, 2, . . . ,Mi} in each slot. The symbol sequence from user i is represented by the vector si = [si1, . . . , si,Mi].
At the transmitter, each symbol sin is spread by an aperiodic code vector cin with spreading gain (length)
Gi, followed by a chip pulse-shaping filter. The propagation channel of user i can be modeled by an
equivalent chip-rate finite impulse response hij , j = 0, . . . , Li − 1, where hij can be viewed as the gain of
the jth finger of the user i’s multi-path channel.

Because the channel is linear, we can first focus on symbol sin from user i transmitted in the nth symbol
interval and set all other symbols and noise to zero. Let the received signal corresponding to symbol sin

Computational Tasks 20

be passed through a chip-matched filter and sampled at the chip rate. All samples are put in a vector
yin. As shown in Figure 10, yin is a linear combination of shifted (delayed) code vectors cin, where cin is
the segment of Gi chips of user iÂ’s spreading code corresponding to the nth symbol. Each shifted code
vector is multiplied by the jth fading coefficient hij , and the channel response to sin is given by

yin = Tinhisin, hi = [hi0, . . . , hi,Li−1]′.

Here, Tin is the code matrix of user and symbol [see the top part of Figure 10], and hi is the multi-path
fading channel for user i. We assume that user i has a relative delay of Di chips with respect to the
reference at the receiver. One can view that each column of Tin corresponds to a discrete multi-path
component. For example, the first column of Tin is made of (n− 1)Gi +Di zeros that model the relative
delay of the first path with respect to the reference followed by the code vector cin and additional zeros
that make the size of the total number of chips of the entire slot. The second column of Tin models the
second multi-path component similarly. Note that for sparse channels, the shifting of the code vectors
does not have to be consecutive. For user i, the total received noiseless signal is given by

yi =

Mi∑
n=1

Tinhisin = Ti(IMi
⊗ hi)si

Ti = [Ti1, . . . , Ti,Mi].

Matrix Ti is the code matrix of user i , and it does not depend on the gains and phases of the multi-path
channel. Now including all users and the noise, we have

y = THs+ w

T = [T1, . . . , TK]

H = diag {IMi ⊗ h1, . . . , IMK
⊗ hK}

where matrix H is block diagonal with IMi
⊗ hi as the ith block, vector s is a stacking of all symbol

vectors, and w is a vector representing the additive Gaussian noise. The structure of the code matrix T is
illustrated in the bottom part of Figure 10. Note that by allowing to have different sizes for different users,
we include cases where variable spreading gains are used. We will impose the following assumptions.

A1 The code matrix is known.

A2 The code matrix has full column rank.

A3 The noise vector is complex Gaussian with possibly unknown .

Assumption A1) implies that the receiver knows the codes, the delay offsets Di , and the number of
channel coefficients Li of all users. If Di is unknown, we may set it to 0 and model all paths. Li is
a model parameter, and its choice is often left to algorithm designers. Since any channel coefficient is
allowed to be zero, one can over-parameterize the channel to accommodate channel length and delay
uncertainties and pay a price for the lack of modeling details. If we know that the channel is sparse, it
is more efficient to model the channel as separate clusters of fingers. In that case, we assume that the
approximate locations of these clusters are known.

Assumption A2) is sufficient but not necessary for the channel to be identifiable. When A2) fails, the chan-
nel may still be identifiable. In practice, one may only include a limited number of dominant interferers
and significant fingers in the data model.

Computational Tasks 21

Figure 10: (Top) structure of Tin. (Bottom) Structure of the code matrix T . Taken from rom [3].

Computational Tasks 22

6.2.3 Blind Channel estimation via Least Squares

The output of the decorrelating matched filter is given by

u = T †y = diag {IMi
⊗ h1, . . . , IMK

⊗ hK}s+ n

where n = T †w is the (colored) noise vector. Partition u into segments of length Li with uin as the(∑i−1
j=1Mj

)
+ nth subvector. The structure of u in the equation above implies that uin corresponds to

symbol n of user i and satisfies

uin = hisin + nin, n = 1, . . . ,Mi.

Collecting all data for user i gives

Ui = [ui1, . . . , ui,Mi
] = his

′
i +Ni.

Treating hi and si as deterministic parameters, we can define the least squares problem

{hi, si} = Minh, s‖Ui − hs′‖2F

and estimates of hi and si (with an unknown scaling factor) are found from a rank-one approximation of
Ui . In other words, denoting

R̂i =
1

Mi

Mi∑
n=1

uinu
′
in

we obtain the least squares estimates

ĥi = argmax‖g‖=1g
′R̂ig, ŝin = ĥ′iuin,

The solution ĥi is given as the dominant eigenvector of R̂i. The scaling ambiguity in the above estimates
must be removed by either incorporating prior knowledge of the symbol, using pilot symbols, or employing
differential encoding of sin.

6.3 Non-causal prediction for image compression

An image is modelled as a noncausal Gaussian Markov Random Field (GMRF). Basically, this says that
the image is represented by a bidirectional autoregressive linear model driven by a correlated input noise.
The image is defined on a M ×N lattice I(i, j), where i, j represent the row and column index of a pixel,
respectively. We stack the intensity levels of the pixels in column i in the column vector xi and then stack
these in a NM -dimensional vector x

xi =


I(1, i)
I(2, i)

...
I(M, i)

 , x =


x1

x2

...
xN


Representing an image by a first-order GMRF leads to the expression

Î(i, j) = βv(I(i− 1, j) + I(i+ 1, j)) + βh(I(i, j − 1) + I(i, j + 1))

Computational Tasks 23

for the prediction of the pixel value at position (i, j) and quantities βv and βh are the vertical and
horizontal model parameters. The prediction error is defined as

e(i, j) = I(i, j)− Î(i, j)

Using vector notation and collecting the coefficients βv and βh in an NM ×NM matrix A , the MMSE
representation of the finite lattice GMRF is written as

Ax = e

where e denotes the MN -dimensional vector containing the noise samples e(i, j) using the same stacking
principle as we used for the image. The set of pixels belonging to to the neighbourhood MathcalN(p) of
order p is indicated in the following scheme:

N (p)p=1,2,...,6 :

· · · 6 · · ·
· 5 4 3 4 5 ·
· 4 2 1 2 4 ·
6 3 1 0 1 3 6
· 4 2 1 2 4 ·
· 5 4 3 4 5 ·
· · · 6 · · ·

.

For the most simple case, i.e. for p = 1 we can write out the corresponding matrices to be

A = A′ =



B1 C1 0 · · ·
C1 B C 0 · ·
0 C B C 0·
0

. . .
. . .

. . . 0
· · 0 C B C1

· · · 0 C1 B1


using the block matrix

B =



1− βv −βh 0 · · ·
−βh 1 −βh 0 · ·

0 −βh 1 −βh 0 ·
0

. . .
. . .

. . . 0
· · 0 −βh 1 −βh
· · · 0 −βh 1− βv


and

C =


−βv

−βv
−βv

. . .

−βv

 .

The exact form for the matrices B and C also depends on how the borders of an image are treated,
i.e. with boundary conditions are applied. We can choose from various alternatives such as Dirichlet or
Neumann boundary conditions. Asymmetric Neumann boundary conditions amount to assuming that a

Computational Tasks 24

boundary pixel outside of the image has the same value as the next boundary pixel inside the image. For
this boundary treatment the matrices B1 and C1 are determined as

B1 = B + C and C1 = C.

For higher orders of the neighbourhood, the matrices A,B and C will contain additional diagonals. In any
case, the matrices involved are all sparse containing mostly zero-entries. Since A is symmetric positive
definite, we can apply a block Cholesky factorization A = U ′U with

U =


U1 Θ1 0 · ·
0 U2 Θ2 0 ·
· . . .

. . .
. . . ·

· · 0 UN−1 ΘN−1

· · · 0 UN

 ,

where the matrices Ui and Θi are upper-triangular. With this factorization we rewrite the non-causal
prediction process of order p = 1 as

Ux = (U−1)′e = w

where the vector w contains uncorrelated noise samples. In detail, we compute

Ux =


U1 Θ1 0 · ·
0 U2 Θ2 0 ·
· . . .

. . .
. . . ·

· · 0 UN−1 ΘN−1

· · · 0 UN




x1

x2

x3

...
xN

 =


U1x

1 + Θ1x
2

U2x
2 + Θ2x

3

...
UN−1x

N−1 + ΘN−1x
N

UNx
N

 .

U ′U =


U ′1 0 · · ·
Θ′1 U ′2 0 · ·
·

. . . ·
· · Θ′N−2 U ′N−1 0
· · · Θ′N−1 U ′N




U1 Θ1 0 · ·
0 U2 Θ2 · ·
· . . .

. . .
. . . ·

· · 0 UN−1 ΘN−1

· · · 0 UN

 =

=



B1 C1 0 · · ·
C1 B C 0 · ·
0 C B C 0 ·
0

. . .
. . .

. . . 0
· · 0 C B C1

· · · 0 C1 B1


Based on this, we can devise a recursive scheme for computing the individual block entries Ui and Θi of
the matrix U as

U ′iUi = Si, U ′iΘi = C

using the Riccati-type recursion

S1 = B, Si = B − C ′S−1
i−1C, 2 ≤ i ≤ N.

For the purpose of image compression this scheme can be utilized to compute the prediction error vector
w from a given image I. The coder will apply further compression techniques on w, such as vector

Computational Tasks 25

quantization and entropy coding (e.g. Huffmann codes) to determine a bit efficient representation. The
decoder then needs to receive the parameters βv and βh along with the compressed vector w to invert the
operations and reconstruct the image I. The non-causal prediction process has the purpose to compute
a vector w, which requires significantly less bits to be represented than the original image I.

The decompression could be seen to just simply invert the filtering process by computing

A−1e = x.

Here the issue is that while A is a sparse matrix the matrix A−1 will in general be a full matrix. For
practical purposes this is unfeasible to determine. Numerical linear algebra offers a range of computational
methods for solving linear systems of equations with a sparse coefficient matrix in an efficient manner,
i.e. without explicitly determining the inverse matrix. However, these methods are iterative schemes, like
Gauss-Seidl- or Jacobi-Iterations, which are not well suited for a technical implementation in hardware.
The inversion of the non-causal prediction filter can be computed recursively as starting out from the
filter recursion

wi = Uix
i + Θix

i+1,

which we can invert to generate the backward recursion

xi+1 = −Θ−1
i Uix

i + wi

xi = U−1
i (wi −Θix

i+1),

where the indexing starts with i = N running backwards. Notice that Θ−1
i is a full upper triangular

matrix

Literatur

[1] G. Strang. Computational Science and Engineering. Wellesley-Cambridge Press, 2007.

[2] P. Dewilde, K. Diepold, W. Bamberger. Optic Flow Computation and Time.Varying System Theory.
Proc. MTNS, Leuven, 2004.

[3] L. Tong, A.J. van der Veen, P. Dewilde. Blind decorrelating RAKE receivers for long-code WCDMA,
IEEE Trans. Signal Processing, Volume 51, Issue 6, 2003.

[4] A. Asif. J. Moura. Image codec by noncausal prediction, residual mean removal, and cascaded VQ.
IEEE Trans. Circuits and Systems for Video Technology, Vol.6, Issue 1, 1996.

[5] N. Balram, J.M.F. Moura, Noncausal predictive image codec, Image Processing IEEE Transactions
on, vol. 5, pp. 1229-1242, 1996, ISSN 1057-7149.

[6] N. Higham, Accuracy and Stability of Numerical Algorithms, Second Edition, SIAM, 2002, xxx+680
pp, hardcover, ISBN 0-89871-521-0.

	Standard Computational Tasks
	Introduction
	Simulation
	Characteristics
	Typical Application Examples

	Data-driven Science and Engineering
	Characteristics
	Typical Application Examples

	Cyber-Physical Systems
	Characteristics
	Typical Application Examples

	Linear Systems
	Standard Representation
	Problem Formulations

	Non-Linear Systems
	Typical Computational Tasks

	Numerical Linear Algebra
	Cost of Linear Algebra
	Data Sparse and Structured Matrices

	Evaluation of Numerical Computations
	Evaluation Criteria
	Runtime of a program
	Numerical stability
	Sensitivity - Condition Number

	Examples of Large-Scale Matrix Computations
	Motion Analysis in Video
	Description of Technical Task
	Linear System of Equations

	W-CDMA Rake Receiver
	Problem description
	Matrix Model
	Blind Channel estimation via Least Squares

	Non-causal prediction for image compression

