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Constrained Interpolation

We concentrate at first on the class of interpolation problems
with a constraint on the norm of the interpolant

e Nevanlinna-Pick
* Hermite-Fejer

e Schur
 Schur-Takagi

and will derive ‘matrix versions’ for them



Motivation

(1) ‘low complexity’ matrix approximation
(2) solving problems of the type “pre-conditioners for positive definite C = LL"*:

arg mMin - of 1ow complexity”LX — I||p with L, X Cholesky factors

(3) ‘Hankel-norm’ model reduction of a time-variant (quasi-separable) system



Classical interpolation problems

H (Z ) uniformly bounded complex functions that
are analytic in the open unit disc D - {z : |z| < 1} with boundary

{z:]z| =1} and norm l.
S(z)|= supH‘S(e 9)‘

HS(Z)H = Sup‘z‘d

Nevanlinna-Pick: Given (single) points w,_;.,
and Values s;

Find necessary and sufficient condition for S(z) s.t.
o ° (1) Vi:Sw) =s;

k J 2 |IS@ll, L1 [norm constraint!]




Schur-Takagi

Same types of interpolation as before, but now allow
singularities in the unit disc in the solution

(1) let S have a minimal number of poles in the open unit disc D
(2) wuse as norm ‘sup on the boundary circle T’

Motivation: turns out ST solves the ‘Hankel norm
model reduction problem’



Schur-Takagi Interpolation on the unit circle
of the complex plane

Let {a,_,.,} be a set of (distinct) points in the open unit disc D of the
complex plane, and s; a set of ‘interpolation values’. Find a

function S(z) that is meromorphic in D such that

1. S(a;) = s;

2.18(z)| £ 1for |z] =1 (belongs to L)

3. S is meromorphic in D with a minimal number of poles.



An algebraic solution

Let CL1/

/

Ap

7Bl

and solve the Lyapunov-Stein equation:

AMA' 4+ Bi1B! — BoB, = M

1

7B2:

(under the given assumptions there will always be a solution)

Then:

(1) If M is singular we have a ‘singular case’.... skip it!

(2) If M is non-singular, let (11, n,) be its signature (inertia)
then solutions exist with n, poles in D (and of degree less or equal to n).




How to construct all solutions?

Construct a J-unitary causal matrix © of dimension 2x2 with

| A|B1 B |

as ‘reachability operator’ (always exist), then all solutions
are given by

S = (SrO12 — O22) 1 (O11 — SO2)

in which §; is in H_, and contractive, but otherwise arbitrary.



‘Historical’ note

the problem and first results go back to independent papers
of Schur and Takagi (1910-20)

a very extensive analysis in the complex case 1s due to
AAK (Adamyan, Arov, Krein)

many other researchers worked on it, in particular Gohberg,
Langer, Dym, Glover, Partington etc...

Bultheel-D started the ‘system theoretic’ view on it

the theory being algebraic can ‘easily’ be generalized to
‘Just matrices’ and time-varying systems (no complex plane
anymore)!
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Tangential problems

Now we look for S(z) € HX", an mxn matrix function, meromorphic and contractive in
the unit disc, which also interpolates at certain points a,_;., € D in certain directions ¢&;:

S(a)s; = n;

How are such constrained interpolation problems
solved? We shall use a ‘modern” method based
on ‘scattering theory’ that can be generalized to
matrix problems...

It is solved the same way as before,

now with reachability operator al’ f 1/ _771, ]
| A Bu| B2 | = E
i ap | &n |~




Working on (time-variant) matrices?
Motivation for the construction:

y(z) = S(2)u(z) with S(z) € H,

1s equivalent to

Y0400 = TOG["’ ,8_1,80,31,"']“1—00:4—00
with i ]
S1 8o
SZTOG["',8_1,80,81,”']: S S1 S0

In which S(z) translates to a lower, contractive, Toeplitz operator S .



More general framework with block
matrices works as well

with dimensions m_

input vectors u_ in 7}’

oo:+ooinl’ﬂ£l
S: 0V —>¢7:y=38u

dimensions may disappear: finite matrices!

00,+00 00+ 00

output vectors y_ .. ., wWith dimensions 7_

where, for the causal case:
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upper-lower-diagonal Frobenius spaces

Global input space:

~
~
/ 2
X
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

~
~
~

m:mk=

—Q00:+00

Total also required to be square integrable!

Also called “Hilbert-Schmidt” spaces 3’;
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Model of computation (linear-lower)

X_
lv Quasi-separable realization:
u_, Y. g Lk41 _ Ak Bk T
Yk Cr Dy U
xg State transformation x, = R, X, with R, square invertible:
N ) —1 —1
> C. Dy Cy Ry, Dy,
X Global representation:
Y A=diagA_ .10, A =diagAd_ .1, etc.
u, Vs causal shift: [Zx|r11 = x
Transfer operator:
X S=D+C(I-ZA)"'ZB
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Translation rules

Complex plane Matrices
scalars wy, s, block diagonals W, S,
shift z shift Z

shift commutes with scalars shift does’nt commute

but keeps diagonal form:

N DV =ZDZ’
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Important spaces related to an upper QS
matrix T = D + C(I — ZA)~'ZB

Global reachability space:
B'Z'(I — A’Z’)_1D2
1.e., all strict past input sequences, at all indices, corresponding
to a state (9, square integrable (block) diagonals)

Observability space: C(I—-Z A)_1D2

all output sequences, at all index points, that can be generated from
strict past inputs

B'Z'(I — A’Z")" YDy forms a sliced basis’ if the realization is strictly
‘reachable’ (a basis at each index point)

C(I — ZA)" 1Dy forms a ‘sliced basis’ if the realization is
strictly ‘observable’

(Nerode equivalence) 17



Matrix interpretation

Il

Cit14;
CitoAit14A;

a minimal factorization of each H.

corresponds to finding a realization

column space = reachability sp.
row space = observability space

low rank ith ‘Hankel matrix’

| Bio1 Aio1Biso Ai_1Ai 9B 3
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Point evaluations

Complex plane
equivalent to

S(Z) =S + (Z - Wl‘)Si(Z)a Si(Z) S Hoo

or

Matrices

SNW,) = S; for W, and S; diagonals
equivalent to (defined by)

S=3S8,+S5,Z-W), S lower and bounded

or, equivalently

(z—=w) (S —s) € H S=S)Z-W) ez
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Generalized interpolation for matrices

(because of the general formalism, subsumes Nevanlinna-Pick,
Hermite-Fejer and Schur. For Schur-Takagi, see later)

Data (block diagonals): W, 5 0 7/] all bounded, with V u.e.s.

Find S such that .
(1) Sislower, contractive

@ SE-mEZ-W)y'leZ

matching dimensions needed!
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Tangential Nevanlinna-Pick:

Schur:

Wi

Examples
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Hermite-Fejer (mix of the preceding!)

Vi

0

I

<mpr—1>
Vki

I

<myg >
Vk

K
Nk -

€k ][0
[Uk] 0]

0
[Uk:] [1]

0]

[Uk:][mk] }

(1)
These may be stacked again for different £’s and we obtain the full Hermite-Fejer
interpolation problem with

Wi
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Solution methodology:
scattering theory

a_ passive
S contractive scattering \
lower b = Sa medium /

lossless transfer:

— lossless medium S _
passive

b> [Zf]:{gi glﬁ“?ﬂ load

@]_. < b2 bz = SLaZ

Y unitary: X' =YY =1 S =351 + EQQSL(I — 2125L)_1211



Chain scattering matrices

a, a,
—> —> az | 11 O19 51
?. -« b2 Oz Oa9 b1
1 b
—> —> > —>
®1 62 ®3
< < < <—

O = 030,0,



Central properties of chain scattering
matrices

I
e © is J-unitary for J = [ 7 ] (conservation of energy)

e (classical case:) transmission zeros = (modes)* i.e. the
frequencies where the input scattering is independent
of the load, or 2,,(w;) = S(w;) (interpolation) provide
the poles 1/w.* of ©. For the matrix case this translates

to:

OJBLZ'(I — ALZ") Dy = Co(I — ZAe) D,

reachability space maps to observability space by multiplication with ®J
e loading formula:

[ S -1 } = (@22 —SL@lg)_l [ S —1 }@
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Central interpolation theorem

Let W, &, n be the interpolation data and assume that the pair (V, §) is strictly reachable,
then the interpolation problem has (strict) solutions, iff

Wl

is the reachability pair of a lossless chain scattering matrix ©,
i.e. iff the Lyapunov-Stein equation

P =W/PW +£'€ —n'n
has a strictly positive definite (diagonal) solution P (which is called the Pick matrix)

Furthermore:
All solutions are given by loading © with an arbitrary upper contractive S, .
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Sketch of proot

Consider the following facts:

J-unitary, upper operators have J-unitary realizations and vice

versa. Given a reachability pair [ Ao ‘ B@)l B@’Q }: there should exist a
state transformation R which makes

(R-Y)"1[ AeR | Bo,y Be,: |

J-isometric with block signature +,+,- .
This will happen iff the Lyapunov-Stein equation

P1 = AgPAL + Be1BY | — Be 2B,

has a strictly positive definite solution P, which defines R as P = RR’

(modulo an irrelevant right unitary factor!)
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Sketch of proot (2)

2. The requested interpolation formulates as

(S€ —n)(Z — W)~ € causal
Le.

S I}[fn](Z—W)—leﬁ

one recognizes a reachability space:

[ _577 ] 211 —WZ') 1D,
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Sketch of proot (3)

(=) S contractive in the above formula requires the basis
[ ¢ ] Z'(I-wz')"!
to be J-positive. This is: requiring a positive definite solution
to the Lyapunov-Stein equation: P{~1) = W'PW +£/¢€ —n'n
(=) if
[ S -1 } = (@22 — SL@lg)_l [ S —1 } ©

with ® having reachability data
[ W/ ‘ Y }

then interpolation holds!
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Norm approximation (summary)

There is a “Caratheodory-Fejer” version of the previous theory: interpolations of a related
strictly positive definite matrix C defined by

C=31(G+G")=LL'=M'M (Cholesky)
(with G a causal part of , and L, M Cholesky factors).

Any interpolation on data from G via the Cayley transform S = (G +1)"(G = I)
produces a low complexity ®, and low complexity approximations

Co =3(Go+G)=L,L,=M]M,

such that arg miny ||[LX — I||F is given by X = L-'d where d is a diagonal
tending to / when the interpolation proceeds.
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Schur-Takagi interpolation

In this case, the interpolation problem does not lead to a lossless ®, but only to a
fully non-singular solution of the Lyapunov-Stein equation and a causal
J-unitary ®:

pPi-1 = AePAg + Bo1Bg 1 — Be2Bg

Let the inertia of P:

P, = Ry, [ Tn. ] Ry,
—IQk

This will produce an interpolating and contractive S which is not ‘upper’, but whose
lower part is quasi-separable of dimension q (i.e. has a realization of dimension q,

that is hence g, at each index point k.)
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Application: model order reduction

Given: o T - astrictly upper matrix to be reduced
e T=C(—-ZA)"'ZB - a “high order” model for T (e.g., a power series)
e |- an invertible diagonal, measure of accuracy

Asked: T,— C,(I—ZA,)"'ZB, of lowest possible complexity

such that B
”(T_ Ta)r 1”Hankel <lI

where the Hankel norm is ‘sup’ of the norms of the matrices H,;
it is a ‘strong’ norm.
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Solution

A
Assume the original given in ‘output normal form’, i.e. [ C isometric.

Do the following steps:

(1) find an orthogonal completion of [A CJ:
C Dy

ABU]

(2) solve the Pick equation with the data [ Ay ‘ By B -1 }

(3) find T, by projecting the causal part out of the Schur-Takagi interpolating operator
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Practical solution: essential Hankels

Although the solution presented is exact, it has its drawbacks:

it is somewhat difficult to compute and requires treatment of all
the data. A practical approach (advocated by Chandrasekaran-Gu
as well as Van Dooren e.a.) consists in computing nested SVD’s:

subtract blue add red
H, — H
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