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Deep Learning-Based High-Level Corridor Selec-
tion in Optimization-Based Motion Planning

Background

Current paradigms to solve motion planning problems for autonomous vehicle can broad-
ly be categorized into classical approaches, which involve optimization, sampling or search
and learning-based methods, which use data-driven techniques to train an agent for decision-
making and planning. While rule-based methods may be limited in terms of their ability to handle
uncertainty, purely learning-based methods (e.g., end-to-end planning) are nearly impossible
to verify. Thus, hybrid planning approaches combining both paradigms can alleviate the afo-
rementioned drawbacks. In previous works, different approaches have been proposed to con-
struct such frameworks. [1, 2]. For this work, we want to employ a learning-based method for
high-level maneuver selection.

Description

In this thesis a learning-based approach which ranks and selects high-level maneuvers for un-
derlying optimization-based trajectory planner shall be developed. Especially for optimization-
based planners, creating suitable solution spaces (so-called maneuvers) to derive constriants
for the optimizer is highly important. In this work, we represent these maneuvers as driving
corridors obtained from the reachable set of the ego vehicle [3] (see Fig. 1). In our previous
works we have shown that set-based corridors are an efficient way to compute solution spaces
for different types of trajectory planners [4, 5]. However, choosing an appropriate corridor, in
case multiple options exist, is yet an open question.

In this thesis, a learning-based approach to select a driving corridors should be developed. In
a previous work [6], an initial concept has been developed which classifies different corridors
in terms of feasibility for the underlying planner. Therein, a first data generation and training
pipeline using CommonRoad scenarios [7] has been implemented. In this work, this concept
should be extended to rank different corridors for selection. Thus, the trained model should be
able to predict a-priori, which corridor / maneuver is the ”best” for trajectory planning w.r.t. to
predefined criteria.

Figure 1: Two driving corridors for a simple dynamic traffic scene, corresponding to a stopping
maneuver and an evasive maneuver [8].

Figure 2: Ego vehicle trajectory (orange) planned using an optimization-based planner [4] for a
given corridor.

Advanced previous knowledge in applied deep learning is required, e.g., terminology (e.g. Fea-
ture, Layer, Head), layer types (e.g. Linear, Convolution, Batchnorm, Fully-Connected, ResNet
Bottleneck, LSTM, Skip-Connection etc.), basic architecture types (e.g. GAN, AutoEncoder)
and basic PyTorch knowledge.
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Outline

Given the data set and our planner, we aim to predict a ranking of different corridors w.r.t. the
value of the cost function and/or whether the corridor is feasible for the planner. Thus, a network
architecture [9, 10] should be developed which uses the corridor representation as input, with
additional scenario-related features, e.g., distance to a reference path or obstacles. As output,
we want both a classification for feasibility / drivability [9] [6] and a function approximation [11]
for the cost function of the planner. Therefore, the network should have a combined function
approximation and classification architecture / head. One possible starting point could be a
cloud-based network [12] as a backbone and build a vertex-based function approximation and
classification architecture around it.

Tasks

• Familiarization with existing approaches for reachable set computation, driving corridor
extraction and planning [8], [4], [6] and our optimization-based planner and the dataset
generated in previous works.

• Literature research on learning-based feasibility and drivability estimation and a specific
literature research on deep learning network architectures [10], especially for function
approximation and classification.

• Conceptualization of a network architecture which is suitable for the given task.

• Implement, train and evaluate the network architecture using CommonRoad scenarios.

• Documentation of results.
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