Robust Reinforcement Learning using Set-Based
Training

Background

Reinforcement learning is increasingly used for a variety of continuous control tasks [3, 1, 8].
However, it is well known that small perturbations may result in large deviations in the action
space [2], which limits the applicability in safety-critical systems. Recent advances propose
safe and provably safe reinforcement learning methods including safety penalties in the training
process [6]. One crucial difficulty is the design of the penalties for non-safe behavior, where
current state-of-the-art methods usually choose a safe action — via a safety shield or action
projection — to a safe space and give a negative reward.

Description

The thesis aims to extend set-based training [5] to reinforcement learning. Using set-based
training, the penalization of non-safety behavior can be formulated in the computed gradients.
Throughout the course of this thesis, a novel reinforcement learning algorithm based on set-
based training shall be developed. The aim of using set-based training is to increase the ro-
bustness of the deep reinforcement learning agent with respect to limited input noise. Multiple,
differently complex versions of the novel reinforcement learning method shall be developed,
implemented, and benchmarked for different continuous control tasks. The performance will be
compared to commonly used point-based training, under the influence of limited input pertur-
bations.

Tasks

Literature research on state-of-the-art RL methods, e.g. actor-critic

Implementation of different set-based training structures.

Performance evaluation of the novel technique.

Comparison to point-based learning approach under the influence of input perturbations.
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(Optional) Design of set-based loss function to enforce correctness of output
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