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Exploiting Monotonicity for Training and Verifica-
tion of Neural Networks

Background

Neural networks are great at solving many complex tasks, e.g., object detection [10], natural
language processing [11], or chess [8]. To ensure the safety of neural networks in safety-critical
environments, such as autonomous driving [12], there is a large field of research around the
formal verification of neural networks [1]. However, the formal verification of neural networks
is computationally hard [5]. Generally, there are two approaches to formally verify neural net-
works: The first approach encodes the specification and the neural networks as an optimization
problem and applies an off-the-shelf solver, e.g., (mixed-integer) linear programming [3] or a
satisfiability modulo theories solver [5]; The second approach computes a tight enclosure of
the output set of a neural network, e.g., using interval bound propagation [4] or by propagating
more expressive set representations like zonotopes [9, 7]. Recent research exploit monotonicity
in neural networks to speed-up and improve the formal verification [6].

Description

For monotone functions, exact output bounds can be computed by propagating input bounds.
Neural networks can be made monotone by small modification of their architecture; recent
research shows promising results by making entire neural networks monotone [6]. However,
such monotonic neural networks can only approximate monotone functions. In this thesis, we
want to compose multiple monotonic neural networks to approximate arbitrary non-monotonic
functions. The composition can be viewed as a mixed-monotone system [2]. Moreover, we want
to investigate the performance of compositional monotonic neural networks and find efficient
methods to exploit the mixed-monotonic behavior for their formal verification.

Tasks:

1. Literature research on formal verification of neural networks.

2. Implementation of monotonic neural network architecture and different methods for their
composition.

3. Training different compositional monotonic neural networks and comparing the perfor-
mance on monotonic and non-monotonic tasks.

4. Development of efficient algorithms for the formal verification of compositional monotonic
neural networks.

5. Extensive evaluation and comparison with existing approaches for formal verification of
neural networks.
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