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Evaluating the Robustness of Neural Networks with
Adversarial Attacks

Background

Neural networks are great at solving many complex tasks [10, 2, 16, 17]. However, the output of
many neural networks is sensitive towards tiny input perturbations [5]. Thus, there is a large field
of research centered around training neural networks that are robust against input perturbati-
ons [12, 6, 14]. A big challenge is the practical evaluation of the robustness of neural networks.
The formal verification of neural networks is computationally hard [8]; thus, even verifying small
neural networks is often infeasible. On the contrary, neural networks can be falsified by gene-
rating input perturbations that lead to misclassifications, so-called adversarial attacks. Often,
adversarial attacks are fast to compute and effective at provoking misclassifications of neural
networks [5]. Therefore, adversarial attacks are suitable for evaluating the robustness of neural
networks.

Description

There are many methods to compute adversarial attacks [5, 13, 15, 11, 3, 1, 4, 7], which are
based on different approaches, e.g., gradient-based [5], optimization-based [3], training neural
networks to generate adversarial attacks [1], or reachability analysis [9]. Moreover, there are
different threat models and types of attacks: white-box attacks have full knowledge about the
neural network, i.e., architecture, parameters, and gradients, while black-box attacks only have
restricted knowledge about the neural network; backdoor attacks manipulate the training to em-
bed a backdoor into the behavior of the neural network. Furthermore, several training methods
incorporate adversarial attacks to increase their robustness, e.g. [5, 12, 18].

The contributions of this thesis are (i) a comprehensive comparison between different types
of adversarial attacks and methods to generate them, (ii) a comparative evaluation of diverse
adversarial training strategies, and (iii) a framework to effectively test the robustness of neural
networks.

Tasks

1. Literature research on state-of-the-art adversarial attacks.

2. Implementation of selected adversarial attacks.

3. Extensive comparison and evaluation of the implemented attacks.

4. Creation of a framework to effectively test the robustness of neural networks.

5. Training robust neural networks and evaluating their robustness using different adversa-
rial attacks.
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