
Distributed Consensus through Network Support
David Guzman

Technical University of Munich
Munich, Germany

david.guzman@tum.de

Dirk Trossen
Huawei Technologies

Munich, Germany
dirk.trossen@huawei.com

Joerg Ott
Technical University of Munich

Munich, Germany
ott@in.tum.de

Abstract—Distributed consensus systems (DCSs) are increas-
ingly important due to the often distributed realization of com-
putational problems like voting systems and cryptocurrencies.
The distributed nature of a DCS impacts the latency required
to achieve consensus. In this paper, we develop an analytical
model with empirically-based parameterization that provides an
upper bound for that latency, thus enabling DCS operators to set
expectations for its performance. We also propose a departure
from the usual peer-to-peer-based DCS realization through an
application-layer-based multicast approach. Our comparative
analysis shows that our solution can improve convergence times
by a factor of four while also ensuring targeted boundaries
through the finality of the consensus convergence.

I. INTRODUCTION

In an ever-more-connected world, implementing a com-
putational problem, such as decentralized file storage [24],
ledger partake [18], network bootstrap [3] and others, across
distributed participants requires to progress over a state rep-
resenting the computational problem.

The distributed realization of the computational problem
requires agreement on the current state among the distributed
participants; this is commonly described as the consensus
problem. The insights in [19] show that reaching agreement
among the majority of participants is enough to assume
consensus; this is referred to as the majority rule. A distributed
consensus system (DCS) implements the methods needed
to reach consensus over a distributed state by achieving a
majority agreement among its participants.

A key factor for DCS performance is the latency bound
within which the system achieves consensus, termed consensus
latency in the following. While the costs of maintaining the
needed communication relations between DCS participants is
another key performance factor, depending on the specific
realization of the DCS, we focus in this paper on the latency
aspect due to its direct impact on the transactional state
changes that the system can agree and confirm on, measured
in transaction per second (TPS) and minutes correspondingly.
For instance, seven TPS with ≈ 60mins confirmation delay
and 30 TPS with confirmation delay of ≈ 10mins are typical
indicators for Bitcoin and Ethereum, respectively [27].

A key aspect in realizing a DCS is its nature of participation.
Different from reaching an agreement among well-known enti-
ties in a DCS, a permissionless DCS lowers the requirements
for participation, e.g., by not requiring strong authorization
or use of trusted execution platforms. Instead, a simple sign-
up procedure suffices together with the use of a distributed

code base embodying the consensus protocol. For example, in
Bitcoin and Ethereum, anyone can openly join and participate
in the process to reach agreement [18], [26]. Through this,
such DCS provides a low barrier to entry into the consensus
partaking; this is often captured as reaching consensus among
potentially non-trustworthy participants.

For these permissionless systems, iterative diffusion [14]
based on a flooding algorithm [6] is used in Ethereum and
Bitcoin. Here, the desired state over which to reach consensus,
is being diffused to an initial set of participants, which diffuses
the information to another locally determined set of partici-
pants, and so on. The problem lies not only in bounding the
latency for the diffusion to the majority of the participants but
also in the finality of the diffusion, i.e., judging that majority
has been reached.

Our key contribution in this paper is bounding this latency
for permissionless DCS platforms. Specifically, we provide an
analytical model for the latency to reach consensus, using
empirical insights from an existing DCS, namely Ethereum.
This contribution enables DCSs to configure parameters, such
as fanout, against a desired bound for the system’s consensus
latency, transaction throughput, and confirmation delay.

Extending this contribution, we compare those insights with
a strawman for an application layer multicast delivery model.
We use empirical insights of existing Ethereum deployments
to parameterize the placement of multicast replication points,
to outline the possible performance gains in consensus la-
tency compared to iterative diffusion. Although our strawman
leaves details open, specifically the necessary spanning trees
for replication, it shows the performance gains once those
remaining design aspects are solved. Specifically, we show
a latency improvement of four times compared to existing
iterative diffusion systems, while the finality of the consensus
operation is achieved with higher certainty and less overhead
of duplicated diffusion messages. These performance gains
are rooted in the fewer diffusion steps required due to the
aggregated nature of utilizing spanning trees across the DCS.

In the remainder of this paper, we outline background on
DCSs in Section II for the basis for our multicast strawman
design in Section III. We then assess the performance of
existing DCS implementations, such as Ethereum, against our
strawman in Section IV, quantifying the diffusion latency
as a key performance indicator (KPI). In Section V, we
discuss its benefits, opportunities, and deployment impact
before concluding in Section VI.

D Gu
© IFIP, 2024. This is the author's version of the work. It is posted here by permission of
IFIP for your personal use. Not for redistribution. The definitive version was published in
2024 IFIP Networking Conference (IFIP Networking 2024)

II. BACKGROUND ON DISTRIBUTED CONSENSUS SYSTEMS

Existing DCS systems like Ethereum and Bitcoin implement
a diffusion-based mechanism to reach consensus among DCS
participants on advancing a common state related to a specific
computational problem. Here, each peer samples N peers out
of a set S of possible recipients. Since peers are generally
unreliable or untrusted, owing to the permissionless nature of
the DCS participation, the sample N is drawn at random. After
disseminating the state advance to the N peers, those peers
will, in turn, perform the same randomized selection of N
peers and so on. This divide and conquer approach leads to
iteratively disseminating information across the DCS [14].

Here, the number of iterations needed to reach the majority
of peers, m ∈ N+, in a time interval tm ∈ R+, determines
the DCS consensus performance in the form of the transaction
completion latency and, therefore, the transaction throughput
of the overall system. The critical challenge for this diffusion
lies in completing the process, i.e., reaching the majority rule,
possibly within a desired time or even ever.

The necessary communication for the diffusion is imple-
mented as a peer-to-peer network over IP by utilizing random-
ized multipoint relations that are established and maintained
as a pool of unicast relations at each DCS peer. For this,
a protocol is realized for pool discovery, establishment, and
maintenance for relations being actively sought by each DCS
peer while simultaneously handling requests from other peers.
Locally generated random seeds assist in peer selection and
discovery, while the unicast relations are constantly replen-
ished for reasons discussed in [13].

These mechanisms are prone to issues, as studied in [13],
[16], [25]. First, it is expensive to maintain updated availability
information of peers joining and leaving the DCS network,
causing discovery and reachability tests to fail, necessitating
the constant pool replenishment of N peers. Second, validat-
ing capabilities requires an end-to-end unicast negotiation to
support end-node heterogeneity. Third, timeouts and delays
due to geographic distribution cause requests and responses
to be dropped. Additionally, frequent changes in end-user
addressing, firewalls, and network address translators (NATs)
perturb the P2P relation establishment and cause imbalance
in the communication [13]. Hence, any bounding of the size
of multipoint relations N needs to consider those issues to
ensure consensus and convergence performance.

Apart from the costs for those mechanisms, the randomized
and highly dynamic nature of the peers’ pools impacts the
convergence latency, often taking many minutes for large-scale
systems. As a consequence, DCS platforms require methods to
work on inconsistent state during the consensus finding phase.
Here, information is partially operated over in a so-called proof
operations to generate temporary system states, representing
an inconsistent yet agreed ephemeral state until consensus is
achieved. The required proof methods, in turn, are responsible
for much of the reported cost factor of popular DCS platforms,
particularly for decentralized cryptographic currencies [10].

III. STRAWMAN FOR AN OVERLAY MULTICAST DCS

Let us now contrast the iterative diffusion in existing DCS
systems with a packet replication approach akin to multicast.
Unlike IP multicast, introduced in [8], we do not assume an
in-network approach but propose an overlay network instead.

Key to our strawman are dedicated Replication Points (RPs)
forming the overlay network, with the option to be deployed
in ISP networks as a virtualized network function or through
a compute node hosted in existing cloud platforms. RPs
implement two essential functions, namely overlay topology
formation and packet replication. We foresee peers obtaining
the RPs to announce through, e.g., sign-up methods.

For the topology formation, RPs listen to peer announce-
ments to join the DCS. Timed announcements can be used
as a heartbeat mechanism to ensure the freshness of peer
membership information in the overlay network. Criteria for
selecting specific RPs may be geography, latency, or others.

For extending beyond a single RP, we suggest building
spanning trees between RPs that allow for the distribution of
service information from an RP-local peer to a given number
of other peers in the tree. This procedure of sending to a given
number of peers (in the spanning tree) is enabled by each
RP aggregating peer announcements during the construction
of the spanning tree by counting the number of downstream
peers at each interface to another RP before propagating the
announcements further to upstream RPs. For this, the next hop
information base (NIHB) in each RP is extended with an entry
peers. As a result, when eventually being propagated to
the peer-facing RPs, the total number S of downstream DCS
peers can be retrieved from the peer-facing RP by summing
up all interface entries for # peers, albeit only approximately
due to possible churn in the set of peers connected to the
RPs. This active spanning tree approach provides more up-to-
date information on active peers in the overall DCS, replacing
the pool creation and maintenance methods [13] done in each
individual peer in today’s DCS realizations.

For the spanning tree, a shared tree may be used. Alterna-
tively, a (full or partial) mesh of RPs may build source-specific
multicast (SSM) trees for each RP, e.g., utilizing methods
outlined in [2] albeit adjusted to our strawman’s overlay
nature. Furthermore, we may utilize improvements to Protocol-
Independent Multicast (PIM) that use unicast tunneling be-
tween replication points akin to our strawman. The authors in
[1] have shown that the costs for signaling messages to build
the resulting spanning tree(s) can be significantly reduced, thus
supporting Internet-scale deployments aligned with the goal
of our strawman. Overall, we foresee a significant reduction
of control traffic compared to the pool maintenance methods
outlined in [13] through our approach of peer announcement
and building an RP spanning tree overlay, particularly when
considering a low churn in the DCS. However, future work
will be required to assess that cost aspect further.

The aggregation of peer announcements and the RP-local
determination of the overall DCS peer number S, is key for
the RPs’ packet replication function since, unlike IP multicast,

packets are not replicated to all clients but to a dynamic
number d of peers. Here, d is defined through the majority
rule as at least half, i.e., S/2, of all announced peers, plus
some overhead δ to account for possible packet losses and
churn among DCS peers. To realize this semantic of d out
of all peers multicast, a peer that initiates a send operation
first queries S from its local RP, which in turn determines this
number from the aggregated # instances entry in its next hop
table, which then allows the peer to determine d = S/2 + δ.

The peer then provides d as a request parameter to its local
RP, based upon which any traversing RP can now implement
the required packet replication function as follows: The RP
first determines all NIHB entries for a given service, with
the total being w, and retrieves the NIHB-specific # instances
entries for each, defined as insti. It then distributes the
provided parameter d of the incoming request as a ratio,ai, of
the # instances entries to the sum of all downstream instances,
i.e., the RP calculates dt =

∑w
n=1 instn with ai = (d·di)/dt.

It then replaces the incoming parameter d with the determined
ratio ai and forwards the request down the NIHB interface i to
the next level RP if the determined ratio is at least 1. To avoid
topological bias towards paths with a strong presence of peers,
the RP may choose to send at least one request downstream
of those NIHB entries where the ratio is determined as zero.

IV. COMPARING ITERATIVE WITH MULTICAST DIFFUSION

When considering the benefits of our multicast strawman,
it becomes apparent that the random diffusion is built on the
fly by the RPs based on the availability announcements of
peers. This RP-assisted approach contrasts against existing
mechanisms described in [13], [16], [25], where peers must
actively (and independently) discover and negotiate sessions
with other peers. Also, the RP-based randomization avoids
consensus centralization since it dodges the super-peer’s higher
connection degree, contrary to the central behavior shown in
[13] for Ethereum, and in [12] for Bitcoin.

These aspects of building and maintaining the DCS overlay,
positioned as the control plane of a DCS, are key to comparing
both approaches regarding their cost and overhead in terms of
messaging, as done in [13] for iterative diffusion.

However, we keep our evaluation in line with the previously
expressed focus of our paper in studying what we call the data
plane performance, as chiefly represented by the convergence
time tm towards a consistent state, including the possibility to
judge the finality of that convergence. To do so, we develop
suitable diffusion models for both dissemination approaches.

A. Model for Iterative Diffusion

We consider a DCS with S peers. Each peer in this DCS
diffuses recursively to N peers. As outlined in Section II,
and in more detail in [13], those N peers are sampled from
the respective peer’s local pool. A diffusion step to N peers
requires td(N) [ms]. The process aims at reaching at least half
of the peers m, the majority rule in tm [ms], and S peers in
tS [ms], as in Fig. 1. Moreover, at each iteration, the diffusion

Fig. 1. Model example for a baseline diffusion in a DCS with S = 72k
peers, m = 36k peers, N = 50 peers, td(N) = 0.200s, and u(t) = 1

sets are disjoint with expected probability u(t) for a fixed N
where u(t) = 1 signifies uniqueness across all diffusions.

We derive from insights into existing DCSs, [16] that a
peer at each iteration parallelizes its invocations. Thus, we
estimate the individual iteration latency, td(N), as diffusion
to a single peer within the set N . With this, we can formulate
the evolution of an iterative diffusion in a DCS over time t as

m < (u(t)N)t/td(N), ∀m,N, S ∈ N+, t, td(N) ∈ R+, (1)

where m unique peers realize the majority rule at time tm =
td(N) · (logN (m)− 1).

We outline a baseline for Eq. 1 using typical Internet P2P
system latencies of td(N) = 0.200s [15], an empirical average
latency from a long-tailed distribution, and assume a complete
uniqueness at each iteration, i.e., u(t) = 1. Fig. 1 shows an
illustrative example for this baseline for the default N = 50
in an Ethereum system with 72k active peers with the dataset
obtained from the authors in [13], [25].

We refine our baseline utilizing empirical insights for the
variables diffusion latency td(N) and uniqueness u(t).

Fig. 2. Latency distribution for td(N) from Internet-scale DCS measurements
with mean 2.1s and its LN approximation with mean 1.04s in a log-log scale

1) Distribution of the Diffusion Latency: To refine td(N)
from the baseline, we use insights from [13], [16] into the
complexities of communication in a DCS. We approximate
td(N) based on 1.8M data points, gathered at a public probe
by the authors in [13], shown as the blue line in Figure 2.

This approximation preserves the primary behavior of the
pool maintenance mechanism, i.e., the constant replenishment
of N peers, resulting in frequently establishing connections to
remote peers, thus incurring latencies over the Internet, while
still considering rare events such as finding an unreachable
peer or a long-termed capability/parameter negotiation albeit
with low probability only. These considerations lead us to a
log-normal (LN) approximation for td(N), shown in Fig. 2
with log-mean µd and σd, denoted as:

td(N) ∼ lnN (µd, σ
2
d) (2)

As we can see from Eq. 2 and Fig. 2, there is some, albeit
small, probability for long diffusion times td(N) and thus also
long convergence time tm for achieving distributed consensus.

2) Distribution of the Uniqueness of Peers: We turn to the
uniqueness distribution in Eq. 1, i.e., u(t). Selecting a set of
random peers at each iteration impacts this uniqueness factor.
This peer selection occurs in the discovery and establishment
of N peers [13] as follows, exemplified in Figure 3 for
Ethereum and further detailed in [17] for other systems:

Fig. 3. Sorting Peers based on Binary Log Distance

Each peer aims at locally creating a unique and independent
ID, determined from the most significant bits (MSBs) of the
digest over its public key, which in turn is derived from
local pseudo-random-number generators [11]. Any incoming
or outgoing ID, i.e., either those actively discovering a peer or
those being discovered by the peer, are then sorted into random
buckets of tuples, which include the peer’s IP address and its
ID, and arranged by the binary log distance (XOR metric)
relative to the local ID [17]. Thus, each peer discovers and
sorts IDs based on its ID and samples from this sorted list to
create a pool of peers of size N .

Fig. 4. (left) Sample of u(t), and (right) ECDF for, pj , selection probability
for a peer j out of S from empirical data based on peer ID crawls

We determine the uniqueness of the randomized sets (across
the diffusing peers) to derive the duplication that harms the
convergence time tm, based on the dataset in [13] with 88
experiments. Each experiment passively probes an ID for five
hours. The probe crawls the DCS with an ID per experiment.
This mechanism is the same across the DCS, and with each
ID, a peer intends to sample periodically from the entire DCS.

The example in Fig. 4-left shows u(t) based on set intersec-
tions of IDs over a small sample of ten selections of N = 50
peers (a default fanout for geth [11]). If a peer diffused to
unique peers at each iteration, the entire matrix in Fig. 4 would
be yellow. Instead, we notice the correlation between chosen
sets as red squares in Fig. 4. Such high correlation is inherent
to the random selection approach, worsened by highly active

super-peers [16] because the size N of selections is larger than
the default configuration, e.g., thousands [16].

Further, we reason about the distribution of those sets from
iteration to iteration. For this, we consider the sequence of
choices made by a peer r0 as an independent and identically
distributed (i.i.d.) selection since the ID sorting scheme en-
sures that the entire DCS ID space is explored, while the
sampling process ensures random picks from sorted IDs [17].

With this in mind, a peer r0 diffuses information to N
random peers drawn from the set S of active peers. Each of
the N peers diffuses again independently to other N remote
peers, randomly selected from the same set of active peers.

This process randomly executes k selections in a set of S
peers, where k grows exponentially from initially k = N = 50
with each iteration since each selected peer, in turn, will cause
executing N selections again.

We model this process through a discrete random variable
b, which counts the number of peer selections r = [r1, . . . , rS]
after k i.i.d. random trials. Then, a peer ri is picked bi
times; hence, the set of peers r are randomly hit or selected
as b = [b1, . . . , bS] times. Consequently, the probability of
observing occurrences b follows a multinomial distribution,
parametrized by p = [p1, . . . , pS] [21]:

P(b|p, k) = k!

b1! . . . bS !

∏
i=1

pbii , ∀k, bi ∈ N+, pi ∈ [0, 1] ,

(3)
where pi is the probability of choosing bi times a peer ri

out of k trials, with
∑S

i=1 pi = 1.
Intuitively, the marginal distribution bj follows a binomial

distribution, where E(bj) = kpj is the expected times a peer
rj is chosen, with variance V(bj) = kpj(1− pj).

Here, p is vital for the uniqueness definition. If selecting a
peer rj were equally likely for all j, then pj = 1

S . However,
there are super-peers to pick with higher probability than
1
S since those super-peers spread their ID to more than the
default N = 50 peers [16]. We show in Fig. 4-right that the
assumption pj =

1
S is nonetheless plausible.

With the above, it follows that E(bj) = k
S with variance

V(bj) = k
S (1 − 1

S). Further, we define the expected unique
peers up to a certain diffusion iteration x from the expected
times a peer rj is selected, as:

E(uj) =
kx+1

lnN
(1− kx+1

S lnN
), (4)

where kx+1/ lnN denotes peers selected up to iteration
x. Now, each iteration can be described as a time-dependent
variable for a diffusion size N with

E(uj) =
N1+t/td(N)

lnN
(1− N1+t/td(N)

S lnN
) (5)

Then, we derive the factor u(t) as a uniqueness upper bound
over the total number of peers up to iteration N t/td(N) as

u(t) = (1− N1+t/td(N)

S lnN
), ∀u(t) ∈ [0, 1] , (6)

refining our initial model in Eq. 1 to

m < (N − N2+t/td(N)

S lnN
)t/td(N), (7)

with N2+t/td(N)/S lnN ≤ 1.
The latter implies tS ≈ td(N)(logN S − 1), outlining the

existence of a moment in the diffusion after which all peers
are exhausted, continuing with information propagation to all
peers only using expensive duplicated communication. In other
words, the iterative process continues diffusing to all S peers
until t > tS , with diffusion to most peers until tm to ensure
consensus. However, for the diffusion at each timestep t, the
system draws exponentially growing trials, and, as time passes,
the cost for repeated sampling of peers grows high.

Fig. 5. Baseline diffusion, i.e., Eq. 1 with u(t) = 1, against the randomized
diffusion model, i.e., Eq. 7 with u(t) < 1, with parameters (a) S = 63, N =
2, td(N) = 0.001s, and (b) S = 72k, N = 50, td(N) = 0.200s

We illustrate this effect in comparison to ensuring complete
uniqueness of peers throughout the iterations, with Fig. 5a
illustrating a small scale DCS with S = 63 peers and Fig.
5b for measured DCS parameters, derived from [13]. There is
a marked decline already before reaching tm, which is even
higher for t > tm, particularly for Fig. 5b, ultimately slowing
down finality, reaching all S peers, of the diffusion process at
time t > tS as illustrated in Fig. 5b.

From Fig. 5, we derive a performance indicator g which
compares the model, i.e., non-uniqueness diffusion, against a
baseline diffusion based on a completely unique selection of
peers at each step in a given time tm through:

g =

∫ tm

0

(u(t)N)t/td(N)

N t/td(N)
dt (8)

In Fig. 5a, this performance factor is g = 3.06, which
implies that a DCS system in a best-case scenario with a
baseline diffusion, i.e., uniqueness u(t) = 1, finds three times
more unique peers in a given time compared to the randomized
selection approach; hence, the diffusion up to the majority rule
is delayed by the same factor g · tm.

Furthermore, we notice g ≈ 1 for the short time regime
in Fig. 5a and Fig. 5b. g = 1.1 when comparing a baseline
diffusion against a randomized one for an Internet-scale DCS
with S ≫ N up to tm in Fig. 5b, and it increases up to g =
1.25 when considering diffusion up to tS . The latter means
the randomization process slows down diffusion on average
to 25% per single request.

Combining our insights into the diffusion latency and the
uniqueness distributions, we can contrast the above baseline
derived from Eq. 1 against the empirical diffusion model

Fig. 6. Comparison for baseline diffusion, i.e., Eq. 1 with u(t) =
1, td(N)1 = 0.200s [15], against the randomized diffusion model, i.e.,
Eq. 7 with td(N)2 = 2.1s, both with S = 72k, N = 50, resulting in
tm1 = 0.336s, tm2 = 3.962s and tS2 = 4.977s in a log-log scale

provided in Eq. 7. Through our results shown in Fig. 6 as
the times for achieving the majority rule tm1

for the baseline
model against tm2

for the randomized empirical model, we
conclude that our empirical insights have stretched the latency
bound for achieving the majority rule by a factor of 11.7,
which conversely means that a system without randomization
can be at least 11.7 times faster at diffusing information to
achieve consensus at Internet scale.

B. Model for a Multicast-based Diffusion

To outline a model for multicast-based diffusion, we detail
the peer clustering behavior and its complexity from the
measurements previously outlined. The clusters are identified
based on an infrastructure provider, i.e., autonomous system
(AS), cloud provider, or hyper-scaler, and its complexity is
based on a geographical spread for each cluster.

A map between an ID, an IP address, and an autonomous
system number (ASN) shows the infrastructure clusters. In
Fig. 7, we characterize the concentration size of peers in
well-known infrastructure providers. This clustering is also
reported in [12] for Bitcoin. For example, the top infrastructure
provider, HOGH in Fig. 7, hosts 10k peers ≈ 9.6% of the total
peers in the DCS. Indeed, 47.9% of the peers rely on 10 out
of 3795 infrastructures.

Fig. 7. Distribution and clustering of peers for an Internet-scale DCS based
on measurements for Ethereum with cluster size for the top 10 infrastructures

To estimate the geo spread for each infrastructure, we map
each peer IP address to a geographic location to describe the
convex hull of an infrastructure cluster, where the geolocation
mapping is guaranteed with 99% accuracy [4]. This assump-
tion allows us to compare each cluster’s geographic span based
on country centroids from empirical results.

The geometric approach is not a topological representation
of the infrastructure provider. Instead, the convex hulls relate
to physical connectivity in terms of locations of peers, geo-
graphical distances, and aspects of logical clustering, bounding
the connectivity span in private backbone infrastructures. We
use this geo span as a weight for the infrastructure complexity
and latency to design the DCS overlay network.

We assume an RP overlay deployed with one RP per infras-
tructure, located in a focal area within the convex hull given
by the nationwide cluster size and serving peers distributed
in those providers, with Ethereum as the example. A country
within an infrastructure convex hull hosting most peers defines
a focal area. For example, in the case of HOGH, the RP serving
6k out of 10.9k peers is located in Germany.

RPs are connected in a partial mesh with peers announcing
their services to the nearest infrastructure RP, using unique
established relations as described in Section III that avoid the
latency variances induced by the processes for reachability
checks, connection establishment, and capability exchange that
iterative diffusion approaches must rely on.

The majority rule demands sending information to m peers.
As outlined in Section III, the initiator inquires the DCS size
from its local RP, being able to thus determine m and provide
it as part of the initiating request to its RP, which distributes
to its neighboring RPs until reaching their local peers. Hence,
two tiers of the overlay multicast mesh support the diffusion,
where the overall diffusion delay, tdm

, is bounded through

tdm = 2 · ta + 2 · tp + te + tc, ∀ta, tp, te, tc ∈ R+, (9)

ta ≤ 0.200s is the delay between a peer and the nearest RP
at the originator and destination RP side. tp is the maximum
processing packet latency at an RP, and te a maximum peering
delay between infrastructures with the most extended inter-
infrastructure delay, bounding this delay to te ≤ 0.100s
[7], [15], and tc being a maximum propagation delay in
infrastructures as outlined in [23] with the highest delay for
GLLC equal to tc ≤ 0.333s [15].

Further, to bound tp, we consider that each RP handles a
maximum of 10k peers, derived from Fig. 7b. Thus, an RP
processes 10k requests in tp ≤ 0.025s given that steering
mechanisms handle ≈ 400000 reqs/s as in [20] where packet
processing relies on in-kernel implementations.

With the above, we compare the time to diffuse to m peers
in an iterative diffusion fashion, tm2

as per Fig. 6, against
the time achieved by our strawman approach, tdm

from Eq.
9, as tm2/tdm = 3.962/(0.4 + 0.05 + 0.1 + 0.333) = 4.486,
improving thus the time to reach consensus by a factor of 4.5.
This is a minimal performance improvement since we upper-
bounded the latencies for our strawman approach. Moreover,
the significant convergence times in rare cases caused by the
long tail delay distributions in the iterative diffusion model
are removed in our strawman approach. Overall, this result
aligns with the expected performance improvement noted in
the previous section as part of the baseline iterative diffusion.

From the insights in Fig. 6, we can compare the time for
diffusing to the entire DCS tS2

against the upper bounded la-
tencies for the strawman approach as tS2

/tdm
= 4.977/(0.4+

0.05 + 0.1 + 0.333) = 5.636. However, the real nature of
the improvement here lies beyond 5.636 since the distributed
nature of the iterative diffusion makes the judgment of finality,
i.e., the completion of the diffusion process, impossible to
judge after the 4.977s provided in Fig. 6. Instead, diffusion
attempts will continue among peers until the peer-local selec-
tion process will ultimately stop the diffusion; even at that
point, an individual peer may not be able to judge finality of
the diffusion without an explicit coordination among the peers.

Here, the controlled sending to d peers in the strawman
provides an enormous qualitative advantage over the iterative
diffusion in that finality can be judged through the finality of
the performed overlay multicast operation; thus, the bound of
(0.4 + 0.05 + 0.1 + 0.333) = 0.883s provides not just a limit
for diffusing to the majority of peers but also for judging the
achievement of consensus, i.e., finality.

We note that RP-supported multicast diffusion avoids the
high percentage of duplicated communication found in the
randomized approach due to actively maintaining service in-
stances at each RP and performing the replication only once.
We leave the evaluation of the resulting cost savings due to
avoiding unnecessary communication to future work.

The key takeaway from a randomized iterative diffusion
compared to a multicast approach is that the latter cannot
only improve in factors of around 4 for the majority rule and
around 5 for the finality of consensus, but it also ensures that
the diffusion ends and the completion time is known.

V. DISCUSSION

Let us discuss a few aspects concerning our model insights
and assumptions made throughout its development.

We assert transferability of our empirical insights to other
DCSs, such as Bitcoin and Algorand, since its consensus
mechanism applies randomized communication [9]. Further-
more, it is extensible to other restrictions, such as for Byzan-
tine faults in [5], where higher constraints are required to
tackle failures and malicious behavior.

Another impact of our results is on the methods to work
on inconsistent state, required to continue operations during
an ongoing convergence process, as observed in [18], [26].
They often incur system instabilities through decision forking
and consuming expensive computational and communication
resources [10]. We argue that our evaluation insights provide
DCS providers with better tools to limit the convergence time,
thus allowing them to tune DCS operations towards desired
operational parameters as well as provide better capabilities to
estimate the necessary costs for the proof methods for those
periods where operations on inconsistent state are needed.

Further, we assert that our multicast strawman may push a
DCS towards much shorter periods of inconsistency. More
so, the insights on bounding the latency may allow DCS
operators to entirely avoid PoW or PoS methods if the latency
lies beyond a desired bound for the operations of the larger

computational problem, although this situation depends on
the specific DCS application and its required convergence
time boundaries. A more profound study across various DCS
applications may provide the needed insights on this potential
to improve the overall environmental impact of the DCS.

Further insights are required into deployment aspects of
our strawman. Our initial proposal in this paper outlines an
infrastructure-based RP deployment, leading to a simple partial
mesh of RPs to handle the complexity of the private backbone.
Other models may include city-wide deployments or a mix
depending on the geographical distribution of peers. What
remains unchanged is the strict time bound on convergence;
merely additional bounded latencies may need to be accounted
for when adding tiers of distribution into the multicast system.

Furthermore, the move towards an RP overlay may allow for
revisiting key security aspects, such as establishing confiden-
tial channels. Here, confidentiality may be merely ephemeral,
e.g., between RP and peer at the local diffusion step. Similar
considerations may apply to IP address confidentiality, where
announcing to RPs instead of diffusing one’s IP address to
possibly many if not all, peers for iterative diffusion may
change the private nature of the DCS, possibly requiring a trust
relation with the DCS platform but not with individual peers.
This removes a fundamental weakness of existing DCSs where
individual peers may misuse the peer discovery process to
scrape other peers’ public IP address for, e.g., denial of service
attacks [22]. Moreover, such trust relation is independent of
the enhancements to the consensus convergence latency since
adversaries (Byzantine peers) remain the same, i.e., 2/3 of
total peers [5] or the majority while achieving consensus [19].

VI. CONCLUSION

Achieving the majority rule over the distributed state is at
the heart of any DCS. The mechanism’s efficacy to diffuse to
at least the majority of all DCS peers drives a vital portion of
the DCS’s cost and usefulness regarding latency bounds.

In this paper, we shed light on the impact of the randomized
algorithms in existing DCSs on the time to converge to a single
state. For this, we formalized an exponential growth model
that captures the iterative diffusion process in those systems.
We bounded the key parameters of this model through exper-
imental insights derived from real systems, here Ethereum, to
lead to expectations for the convergence in those systems. We
specifically showed that convergence times achieved through
iterative diffusion exceed those of ideal diffusion (achieved
through unique peer distribution) by at least 25%.

While our model and results aim to guide DCS platform
operators in their configurations alongside quality-of-operation
expectations, it also allows for comparison against other
diffusion approaches. Here, we specifically showed that a
system that applies overlay multicast for diffusion might lead
to significant improvements in convergence time of a minimum
of 4x for the majority rule and 5x for the finality, with an
ensured finality of the consensus.

In future work, we envision quantifying the practical cost
savings from this key design difference at the Internet scale.

REFERENCES

[1] T. Bartczak and P. Zwierzykowski, “Performance evaluation of source-
specific multicast routing protocols for ip networks,” in 2012 8th
International Symposium on Communication Systems, Networks and
Digital Signal Processing (CSNDSP), 2012, pp. 1–6.

[2] S. Bhattacharyya, “An Overview of Source-Specific Multicast
(SSM),” IETF, RFC 3569, Jul. 2003. [Online]. Available:
http://tools.ietf.org/rfc/rfc3569.txt

[3] R. Bless, M. Zitterbart, Z. Despotovic, and A. Hecker, “Kira: Distributed
scalable id-based routing with fast forwarding,” in IFIP, 2022.

[4] I. Brand Media, “Online Tools,” March 2023. [Online]. Available:
https://tools.iplocation.net/

[5] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design and
Implementation, ser. OSDI ’99. USA: USENIX Association, 1999.

[6] É. Coulouma, E. Godard, and J. Peters, “A characterization of oblivious
message adversaries for which Consensus is solvable,” Theoretical
Computer Science, pp. 80–90, 2015.

[7] T. K. Dang, N. Mohan, L. Corneo, A. Zavodovski, J. Ott, and J. Kan-
gasharju, “Cloudy with a chance of short RTTs: Analyzing cloud
connectivity in the internet,” ACM SIGCOMM, IMC, 2021.

[8] S. E. Deering and D. R. Cheriton, “Multicast routing in datagram
internetworks and extended lans.” ACM, may 1990, p. 85–110.

[9] N. Dimitri, “Proof-of-stake in algorand,” Distrib. Ledger Technol., 2022.
[10] D. Drusinsky, “On the high-energy consumption of bitcoin mining,”

Computer, vol. 55, no. 01, pp. 88–93, jan 2022.
[11] Ethereum, “Go ethereum official client,” 2022. [Online]. Available:

https://github.com/ethereum/
[12] M. Grundmann, M. Baumstark, and H. Hartenstein, “On the Peer Degree

Distribution of the Bitcoin P2P Network,” IEEE ICBC, 2022.
[13] D. Guzman, D. Trossen, M. McBride, and X. Fan, “Insights on impact of

distributed ledgers on provider networks,” in Blockchain – ICBC, 2022.
[14] D. Guzman, D. Trossen, and J. Ott, “If iterative diffusion is the answer,

what was the question?” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Future of Internet Routing & Addressing, ser. FIRA ’23.

[15] T. Høiland-Jørgensen, B. Ahlgren, P. Hurtig, and A. Brunstrom, “Mea-
suring latency variation in the internet,” in Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and
Technologies, ser. CoNEXT ’16. ACM, 2016.

[16] S. K. Kim, Z. Ma, S. Murali, J. Mason, A. Miller, and M. Bailey,
“Measuring ethereum network peers,” in Proceedings of the Internet
Measurement Conference 2018, ser. IMC ’18. ACM, 2018.

[17] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-peer Informa-
tion System Based on the XOR Metric,” in Peer-to-Peer Systems, 2002.

[18] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Journal
for General Philosophy of Science, vol. 39, no. 1, pp. 53–67, 2008.

[19] J. V. Newman, “Probabilistic Logics and the Synthesis of Reliable
Organism from Unreliable Components,” Automata Studies, 1956.

[20] F. Parola, R. Procopio, R. Querio, and F. Risso, “Comparing user space
and in-kernel packet processing for edge data centers,” SIGCOMM
Comput. Commun. Rev., vol. 53, no. 1, p. 14–29, apr 2023.

[21] C. E. Rasmussen, “Discrete Categorical Distribution [Lecture]. Cam-
bridge,” pp. 1–8, 2016.

[22] M. Rasolroveicy and M. Fokaefs, “Impact of ddos attacks on the per-
formance of blockchain consensus as an lot data registry: An empirical
study,” in Proceedings of the 32nd Annual International Conference on
Computer Science and Software Engineering, ser. CASCON ’22. USA:
IBM Corp., 2022, p. 71–80.

[23] L. Salamatian, S. Anderson, J. Mathews, P. Barford, W. Willinger, and
M. Crovella, “A Manifold View of Connectivity in the Private Backbone
Networks of Hyperscalers,” Communications of the ACM, 2023.

[24] D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott, M. Schubotz,
B. Gipp, and Y. Psaras, “Design and evaluation of ipfs: A storage layer
for the decentralizedweb,” SIGCOMM 2022 - Proceedings of the ACM
SIGCOMM 2022 Conference, 2022.

[25] D. Trossen, D. Guzman, M. McBride, and X. Fan, “Impact of Distributed
Ledgers on Provider Networks,” no. 935, 2021.

[26] G. Wood, “Ethereum: a secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, pp. 1–32, 2014.

[27] M. Zhou, L. Zeng, Y. Han, P. Li, F. Long, D. Zhou, I. Beschastnikh,
and M. Wu, “Mercury: Fast Transaction Broadcast in High Performance
Blockchain Systems,” Proceedings - IEEE INFOCOM, 2023.

