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Abstract—In distributed consensus systems (DCSs), a single
peer exposes functionality to other peers to agree on a shared
state for a computational problem, such as for cryptocurrencies
and distributed file systems. We observe, however, that this orig-
inal, peer-centric model has evolved towards deploying several
peers at a single network location, thus exposing the same DCS
services many times, driven by the fees and rewards that can
be gained by doing so. We refer to this trend as the service-
centric model and provide in our paper evidence for this trend, its
growth, and its impact on DCS operations, using empirical obser-
vations in the Ethereum system. Specifically, we shed light on the
opposing observations of increasing reliance on highly available
cloud infrastructures and large numbers of non-reachability
events in the DCS. We provide recommendations on how to
tackle this impact through changes to the Ethereum platform and
identifier generation, believing that those recommendations and
our empirical observations provide useful insights for building
resilient and bias-free DePIN platforms.

I. INTRODUCTION

The vision of a distributed consensus system (DCS) foresees
participating peers to achieve consensus over a shared state
in a continuous computation, where the system does not
exhibit bias towards the location or nature of the peer in the
participating infrastructures in which the peers are deployed.
More so, Bitcoin [29], Ethereum [34], Stellar [25], Chia [7],
and Algorand [10], among others, explore a permissionless
or open membership character for participating in such DCS,
imposing thus less stringent requirements on the peers.

Participation in the DCS is motivated by benefits from
fees and rewards, i.e., peers collect fees for committing and
prioritizing changes to the shared state [9], while the DCS
rewards peers for maintaining a coherent state [29].

This vision aligns well with a decentralized physical in-
frastructure (DePIN) [2], where the participating physical
resources equal peers in a DCS, with tokens used as rewards
for provisioning and using the decentralized resources.

However, as our main contribution, we outline in this paper
that the vision of complete decentralization in DCSs needs
to be more effectively skewed by the realities of deploying
peers on the Internet. More specifically, we show through
empirical evidence that only very few major cloud-based
infrastructures contribute to the consensus-making process,
thus opening the potential for bias and impacting the resilience
of the overall distributed system. The critical issue is that
despite highly available peers in the DCS, achieved through

deploying them in highly available cloud provider networks,
reachability within the DCS remains an issue.

We then derive two concrete recommendations as our sec-
ond contribution, which not only allow for improving existing
DCS platforms through specific changes to their software basis
but also consider them in the design for the platforms that form
the control plane for the emerging DePIN.

For this, we start outlining in Section II the observed trend
away from deploying single peers in a DCS towards de-
ploying many service endpoints within highly available cloud
infrastructures. We then show in Section III the empirical
observations for this trend in the now-deployed Ethereum
system, aligning with previously reported results from other
DLT systems [18], [33]. Through this, we explain in Section
IV the seemingly contradicting observation of unreachability
of highly available peers in the DCS, leading us to concrete
recommendations in Section V to counter the impact of
the observed infrastructure consolidation on the DCS, before
concluding in Section VI.

II. MOVE TO A SERVICE-CENTRIC DCS

In order to deploy a peer, users download and launch
applications, where those applications realize the functionality
required to receive and diffuse a shared state. As an example
for Ethereum, software such as geth [13], [14], open Ethereum
[12], erigon [11], nethermind [30], prysm [23], and others,
provide functionalities, e.g., gossiping, through an application,
as illustrated in Fig. 1-a, being geth the dominating application
in the Ethereum system [15].

Fig. 1. (a) Peer-centric model and (b) its evolution through app. replication

This application actively probes for peers to build and
replenish a collection of successful connections, as outlined
in [19]. The required lookups and connection functionalities
run in a single IP-based endpoint, i.e., a peer exposes the
overall functionality only once to the network. Thus, realizing
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a functionality per peer, we refer to this as the peer-centric
model for the rest.

Contrasting this peer-centric view of a DCS, one can look at
the functionality of a peer as providing a service to other peers.
More so, aligned with known concepts of service provisioning,
that service may be exposed by more than one service instance.
In Ethereum, this is achieved through running multiple replicas
in a single peer; we label this mode of DCS provisioning as
following a service-centric model.

Motivated by boosting rewards and fees, peers join to
partake in the DCS with several running service instances,
as in Fig. 1-b in order to increase the likelihood of earning re-
wards and seizing more transaction requests [9]. This tendency,
shown in Fig. 1-b, denotes the evolution of the peer-centric,
original deployment to that of deploying several peer services
in one network location.

III. EVIDENCE FOR THE SERVICE-CENTRIC TREND

Let us dive deeper into the evolution from the peer-centric
model, a growing divergence between peers and services, a
service-oriented trend driven by profits.

Fees and rewards are drivers that motivate a service-
oriented trend. Peers tune service instances to boost their
participation in consensus building. Any peer joining the DCS
may run several active instances to increase participation and,
therefore, the probability of earning rewards; this is because
the DCS aims to equally distribute dividends among the
running services in the system [29], [34].

Peers realize particular mechanisms to expand their par-
ticipation in the DCS. These mechanisms include configuring
aggressive fanouts, short-timing pool replenishments [35], and
exposing more than one service instance.

First, a pool configured with an aggressive fanout aims at
diffusing a distributed shared state with low latency by reach-
ing more peers than the default [19], [35]. Peers configuring
a higher than the default number of endpoints to grow their
pool degrees realize that aggressive fanout. In Ethereum, for
example, peers set more than the default pool size of fifty
endpoints. This high peer degree distribution is reported in
[18], [28] for Bitcoin, in [17] and [22] as node degree for
Ethereum, and in [33] for XRP Ledger.

Second, faster pool replenishment seeks to diversify the
pool fanout to reach more peers in shorter periods while
diffusing the distributed shared state. For example, the default
timeout for establishing a new connection in Ethereum is
fifteen seconds [13].

Lastly, exposing many service instances per peer increases
partaking in the distributed state consensus.

In Ethereum, application replication per-peer realizes this
service instance exposure, realizing consensus participation
and state diffusion as a service-centric model.

We contrast the peer-centric against the service-centric
model and observe the discrepancy between the number of
peer IP addresses and service instances to introduce the
empirical evidence for the trend.

Fig. 2. The Service-centric Trend

Fig. 2 highlights the degree of the current divergence
between service instances and peers, using empirical evidence
from ≈ 115k different peers identified by IP addresses. These
peers were discovered in campaigns between 2022 and 2023,
as detailed in [19], [32]. In these campaigns, 86% peers ac-
tively provided ≈ 185.5k service instances. This discrepancy
allows us to elaborate on the starting gap at 79.9k peers,
meaning that 69% peers find a one-to-one correspondence
between an IP address and a service instance ID. This gap
grows non-linearly to points of reachability with a maximum
degree of exposing ≈ 1.7k service instances in a peer.

Fig. 3. The Growth in the Service-centric Trend

In Fig. 3, we show that this growth of the service-centric
trend has followed a long tail distribution. This tailed growth
means that few peers run many instances, and many run more
than a single instance. For example, a single peer hosts 1771
instances, and around 175 peers provide between two and
three service instances. Indeed, a few dedicated, well-known
infrastructures aid this behavior, as explained in the following.

The drivers and mechanisms previously outlined push the
peers to seek highly available and reliable infrastructures.
Hence, causing, as an orthogonal effect, a noticeable infras-
tructure concentration. Similar results for concentration have
also been reported in [33] for XRP Ledger and in [18] for
Bitcoin. Fig. 4-a presents this degree of accumulation based
on an IP address to autonomous system (AS) translation [5].
Here, we consider an AS an infrastructure; it includes cloud
providers, Internet service providers (ISPs), and hyperscalers
identified by an AS number. With this in mind, we present
the results for the top twenty most densely populated infras-
tructures. We found that 47.9% of the peers rely on ten out of
3795 infrastructures. But, when looking at the service instance
distribution, we observe that 86.2% of the system instances
run on the ten most influential infrastructures, with 21% of
the instances running in the top infrastructure. Thus, more than



Fig. 4. (a) Infrastructures hosting Peers and Instances, and (b) its Traffic
Concentration on a Day Time relative to CET Time sharing the same y-axis

half of the system relies on less than ten infrastructures, 0.26%
of all infrastructure providers.

Intuitively, most instances in the main concentrated infras-
tructures generate concentrated traffic. Fig. 4-b characterizes
the intensity of this traffic for each infrastructure as the
percentage of requests a passive probe, i.e., a node, receives
from the entire DCS. For example, during the entire measuring
campaign of a passive probe in the DCS, the infrastructure
ATI generated 21% of the whole traffic of the DCS, with
approximately 1% of the requests of the entire DCS each hour,
and HOGH generated 4.89% of the traffic in the Ethereum
system. Notice, first, that more service instances do not
necessarily lead to more traffic due to the tuned replenishment
mechanisms detailed in Appendix A. Second, high intensity is
concentrated in the top most populated infrastructures, with the
second foremost provider generating the most traffic, 21.1%
request out of the entire DCS.

Furthermore, service instances generate daily traffic, as
shown in Fig. 4-b along the x-axis. Notice that service instance
churning in these infrastructures is negligible to absent. This
results as well from the economic driver outlined before.
Moreover, we infer from the service traffic across the daytime
and the hosting service that service instances are highly
available: the traffic density across the day is profiled without
gaps, and infrastructures such as HOGH and ATI in Fig. 4 run
32% of the instances in the system and offer the availability
of 99.9% [20] and 99.99% [1] respectively. But, even though
highly available infrastructures support DCS instances, there
are still issues with service reachability.

Moreover, when looking at the entire system as in Fig. 5,
the top ten populated infrastructures generate approximately
77.2% of the total traffic in the system. The rest of the
infrastructures produce less than 1% of the traffic in the DCS.

IV. IMPACT ON THE ETHEREUM NETWORK

Before diving into the impact and issues, let us outline the
communication pattern for establishing service relations.

Fig. 5. ECDF for the Percentage of Traffic Generated by an Infrastructure

Fig. 6. Incoming (IN) and outgoing (OUT) service relation establishments

Discovery and pool establishment are part of a service
relation building, as described in [19, Section 2.2] and [22,
Section 2]. These procedures are standard among instances
in the DCS and categorized by the instance initiator into
outgoing (OUT) and incoming (IN) relations. In Fig. 6, 1
is an OUT relation, and 3 an IN relation. The discovery
populates a local list with tuples (ip : id) by sending and
receiving messages with neighboring service instances [26].
For example, (ip4 : port4 : id4) may discover (ip1 : id1)
through (ip3 : port3 : id3), as in 2 . The discovered list is
tested for peer reachability and then randomized to establish
an OUT relation, and since the remote peers are executing
the same pattern, IN relations are expected. In Ethereum,
an IN relation establishment includes a TCP connection es-
tablishment, security handshake, capability handshake, and
checkpoint validation [19], [22]. These IN relations are the
majority and shape the impact of reachability in the DCS [22].

Reachability affects the system’s resilience, i.e., survivabil-
ity, of the network. Under failures, infrastructure concentration
represents a shortcoming in the system. A connectivity failure
to an infrastructure such as HOGH will compromise 21%
of the system. Indeed, a connectivity failure in the top ten
infrastructures will undoubtedly affect 86.2% of the system.
However, failures in infrastructures such as HOGH and ATI
seem unlikely since their average network availability is 99.9%
[20] and 99, 99% [1], respectively.

We outline how the service unreachability, accounting for
87% of issues out of all communication trials, impacts these
infrastructures, also reported as 90% in [19], and 93.98% in
[22]. Out of the 87% of reachability issues, ≈ 63% are dis-
connections due to oversubscribed pools, 13% of the problems
are security handshake errors, and the rest comprises capability
and checkpoint validations. The oversubscribed disconnection
is due to instances reaching its IN and OUT connection limits
and denying further requests (too many peers in [22]). The
security handshake errors relate to the service security context
establishment (disconnects in [22]).

In Fig. 7, we illustrate the high percentage of service reach-



Fig. 7. Reachability issues spread along the DCS

ability issues impacting the entire system. The reachability
issues are widely spread in the system, meaning that any
passive probe at any geographical location will experience the
same reachability issues from the entire DCS. Indeed, a service
instance encounters disconnects proportionally to the degree of
the infrastructure hosting.

Fig. 8. Correlation for % Non-reachable against % Instances per Infrastructure

This proportion of disconnections holds for more extensive
hosting degree infrastructures, as shown in Fig. 8, meaning
that the more services are concentrated in an infrastructure,
the more issues a peer finds. For example, ATI hosting 9988
peers with 12568 services exhibits ≈ 10% out of 87% of
the reachability issues. In Fig. 8, this correlation is biased
due to the tuning mechanisms, e.g., short-timed replenishment,
outlined before and detailed in Appendix A.

Fig. 9. (a) Outgoing and (b) Incoming Service Reachability Issues

As stated before, reachability issues are due to pool over-
subscription and handshake issues. We detail these handshake
issues for OUT and IN relations in Fig. 9.

The handshake for an OUT relation towards a remote
instance requires a single remote point of reachability, i.e., a
single IP address, as in 1 in Fig. 6. However, if the response
to this OUT request performs the latest used (virtual) instance
through, e.g., point of reachability (ip2 : port2 : ) in Fig.
6 a host peer with many virtual service instances, it results
in unsolicited responses. The unsolicited responses lead to
an unexpected size of a message. The unexpected messages
during handshakes cause exceptions where the application is
not able to create a further response message, write exception,
the application is not able to match a message in a protocol,
read exception, or the application can not decode a response
message, end of file (EOF) exception, in Fig. 9-a. Fig. 9-a
and Fig. 9-b differ since they are logs for an outgoing service
establishment and an incoming service relation, respectively.

Furthermore, IN relation issues in Fig. 9-b include 30%
EOF errors due to decoding packets from unsolicited responses
during handshakes [13], 3% read issues, and 65.9% from a
security context mismatch.

More specifically, the service security context mismatch is
due to the IP-centric lookup of a service relation. For example,
if (ip1, id1) is discovered by a neighbor service instance
sharing the same IP-based endpoint, as in 2 in Fig.6. The
local instance identifies the relation by the remote IP address
ip4 and loads a mismatched public key id1; hence, the tuple for
the remote endpoint is (ip4, id3) causing a message decryption
exception that results in the high percentage of the service
security context mismatch.

The high percentage of issues for IN relations matches the
previous empirical observations in Section III of the service-
centric model, where single IP endpoints host thousands of
service instances. It is also worth noting that the reported
reachability issues are given for a single probe crawling the
DCS by binary distances through the system IDs. These
issues are expected for the entire DCS, including the so-called
execution and consensus layer [15]. Hence, the observed issues
are pervasive in the DCS and prone to continuously increase
due to the service-centric trend.

Finally, even though we did not conclude on the centraliza-
tion of the system, we still describe how the system resilience
depends on only 0.26% of all infrastructures. The service
instance control may be decentralized, but its concentration
represents a hazard for network resilience [27]. Moreover, the
network’s resilience is affected by the concentration of service
instances and a high percentage of pervasive unreachability
issues of service relations.

V. RECOMMENDATIONS

Our observations in the previous sections lead us to specific
recommendations, discussed in the following, to adjust current
DCS systems and future DePIN designs.

A. Service Dispatcher

To recall, the main issue on reachability is caused by the
handling of all incoming connections at one of the many peers
that are launched at a single IP address, thus causing the other



peers at this address to become ‘invisible’ to the incoming
connection, ultimately failing the handshake process.

Fig. 10. Service Dispatcher

To tackle this issue, we recommend introducing a service
dispatcher module to the current Ethereum stack at the P2P
network level for handling incoming connection requests (in
the distributed pool maintenance process) to forward the
requests to the suitable local peer instance. Fig. 10 illustrates
this new module, where the peer context is the tuple of IP
address and port exposed to remote peers, while the services
contexts represent locally deployed peer instances. Here, the IP
address is likely situated behind a network address translator,
while the id entry is being used to differentiate the various
locally deployed peer instances and thus expose them correctly
to the remote peers attempting to contact them. Based on our
insights in Section III, we observe that up to 1800, service
instances may run atop a single peer, thus limiting the required
context information to less than 100kBytes.

With the service dispatcher being a logical module, it can
be deployed solely in so-called reachability points, configured
to deal with the expected load of incoming requests, while
the peer instances may be deployed in a local sub-network
(e.g., composed of several virtual machines in a cloud provider
network). As shown in our insights of Section IV, adopting our
recommendation in as few as ten infrastructures may reduce
reachability issues in at least 86% of the services in the system.

Our recommendation here aligns with similar developments
in other Internet-based systems, most notably web servers,
where similar dispatcher modules handle site-specific network
mechanisms like DNS, triangulation, HTTP redirection, and
URL rewriting [6], dispatching the individual web requests to
logical web servers with ≈ 4500 concurrent connections per
second dispatching for ≈ 500 clients [24]. The latter shows
that our above-expected load of around 1800 concurrent peer
instances should be easily supported.

B. Location Guided Peer Selection

The concentration evidence in Section II sheds light on
the bias towards few ISPs when executing a random-based
service selection. Works in [4], [16], [31] recognized the same,
albeit for different biases. Salting the service ID generation
or incorporating hierarchies and vicinity path lookups are
approaches to bypassing such infrastructure bias in these
related works. Hence, our recommendation aligns with that
of utilizing salt in the process of the (Ethereum) service
ID generation. This salted approach would allow taking into
account the infrastructure concentration of services, although
we recognize that further work is required to understand the

whole nature of the used salt and to avoid biases towards small
ISPs (infrastructures with few service instances).

VI. CONCLUSION

We described the growth, quantification, and orthogonal
effects of the trend towards a service-centric model in existing
Ethereum. Specifically, we quantified, based on emperical
observations, the degree of reachability issues caused through
this trend and the reasons behind those issues, chiefly the
traffic and infrastructure consolidation through utilizing the
hosting in cloud provider infrastructures. Our insights led to
two concrete recommendations to reduce the observe non-
reachability of deployed peers, while also tackling the impact
of centralization in few cloud infrastructures on the conver-
gence process. In future work, we envision quantifying the
practical costs, implications, and benefits of implementing our
recommendations at scale to guide DCS and DePIN designs.
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APPENDIX A

The tuning mechanisms such as short-timing the pool re-
plenishment leads to high percentage of traffic in the consol-
idated infrastructures. We describe the resulting traffic for a
tuned discovery and connection establishment procedure.

A. Pool Discovery

In comparison to Fig.4 in Section III, we notice in the y-
axis in Fig. 11 that this is not in direct correspondence. The
top infrastructure requesting to discover the network (dGmH)

Fig. 11. (a) Density of Traffic arranged by Top 20 Infrastructures generating
Traffic while Discovering the Network (b) % of Traffic along the Daytime
relative to CET Time

differs from the leading infrastructure hosting most peers
(HOGH). This difference is due to different configurations for
pool replenishment and a banning event reported in [8], [21].
As outlined before, short-timing the execution of discovery for
a pool replenishment is the cause of this behavior.

B. Pool Establishment

Fig. 12. a) Density of Traffic arranged by Top 20 Infrastructures generating
Traffic while Establishing Connections (b) % of Traffic along the Daytime
relative to CET Time

We perform the identical comparison Fig. 4 in Section III
against Fig. 12 for connection establishments. For example,
HOGH is the top hosting infrastructure. Still, CVPN is the
one establishing the most connections, as shown in Fig. 12,
achieved by faster pool replenishment. This behavior for this
infrastructure is also reported in [3] for Bitcoin.


