
Towards Domain-Specific Time-Sensitive
Information-Centric Networking Architecture

Marcin Bosk∗, Jörg Ott†

TUM School of Computation, Information, and Technology, Technical University of Munich, Germany

Email: ∗bosk@in.tum.de, †ott@in.tum.de

Abstract—Due to increasing bandwidth requirements, Ethernet
is replacing traditional technologies such as CAN bus within
the industrial automation and automotive networks. To support
the deterministic communication required in these systems, it is
often combined with the IEEE 802.1Q Time-Sensitive Network-
ing (TSN) group of standards. Information-Centric Networking
(ICN) is an appealing architecture for aiding the migration
to Ethernet. It can map the content-based message identifiers
of the CAN bus and support complex network topologies in
those new systems. This work investigates ICN’s interaction
with TSN and how their combination can support real-time
systems. By extending the EnGINE framework with Named-
Data Networking (NDN) support, we provide a hardware-based
experimental environment tailored to develop ICN-based TSN
systems. We further propose an NDN-based architecture tailored
for networked systems requiring low latency deterministic com-
munication. We show that NDN on top of TSN is a promising
approach on average fulfilling the strict delay requirements of 2
ms and jitter of 125 µs in a seven-hop automotive network, with
our approach further reducing the network overhead.

Index Terms—TSN, IVN, IACS, ICN, Network Architecture

I. INTRODUCTION

Time-sensitive and real-time systems require networks sup-
porting low latency and reliable communication. As legacy
technologies, e.g., Controller Area Network (CAN) bus, can-
not meet the increasing bandwidth demands of modern sys-
tems, Ethernet is replacing previously used networks [1]. It is
usually combined with the Time Sensitive Networking (TSN)
standards [2] that enable deterministic communication, pro-
viding support for low latency, low jitter, and lossless packet
exchange. In contrast to Ethernet, many legacy systems use
signals with message identifiers defining the semantics (and
priority) of a frame, to which all interested nodes “subscribe”,
effectively creating a publish-subscribe (pub/sub) system [3].
This introduces challenges for integrating Ethernet in low
latency systems and their migration from legacy networks,
leading researchers to explore mechanisms above Layer 2 [4].

While building complete connectivity for real-time sys-
tems based on Ethernet is feasible with the industry already
adopting it, focusing on a single Layer 2 technology may be
limiting. The capability to smoothly integrate different Layer
2 technologies across larger systems is more easily provided
at Layer 3, as the Internet Protocol (IP) has proven over
decades. IP, with its host-based addressing scheme, may not be
a perfect fit for the communication based on named message

All links are valid as of 27 April 2024.
ISBN 978-3-903176-63-8 © 2024 IFIP

identifiers we find in industrial and automotive environments.
A similar argument can be made for security in such systems,
generally ensured with separate Layer 2 or above mechanisms,
e.g., MACsec, IPSec, or TLS [5]. Their integration with TSN
is challenging and often requires specialized hardware and
careful consideration of traffic shaping configurations. With
its inherently content-based addressing and native security
support, the Information-Centric Networking (ICN) concept
presents a compelling alternative to IP-based solutions [6].

ICN is a Layer 3 technology tailored for request-response
style communication in large-scale networks. It has valuable
properties for networks built upon TSN, which need interac-
tion with legacy bus systems. ICN supports naming similar
to, e.g, Vehicle Signal Specification (VSS)1, a scheme used
in Intra-Vehicular Networks (IVNs), and does not require
abstractions to end-host addresses. It further supports data
integrity with cryptographic signatures of transmitted data [6].
Finally, ICN includes packet replication methods at network
nodes, beneficial specifically for time-shifted multicast [7].

To address the challenges of real-time systems, in this work,
we outline the requirements and initial design considerations
for an ICN-based architecture tailored for TSN built upon
Named-Data Networking (NDN). We propose several protocol
extensions, among others, based on the concept akin to Persis-
tent Interests (PI) for real-time communication [8]. To enable
experimentation, we build upon our open-source2 EnGINE [9]
framework and extend it with NDN support. Using this setup,
we verify the applicability of NDN for real-time systems in a
simple network combined with TSN traffic shaping. We further
perform an initial verification of the architectural concepts,
comparing its low latency and low jitter IVN communication
requirements fulfillment against an IP-based deployment.

II. BACKGROUND AND RELATED WORK

In the following, we introduce the relevant technologies and
summarize related work investigating the applicability of ICN
for low latency and real-time communication, including TSN.

A. Information-Centric Networking

ICN [10] is an alternative networking concept to the
Layer 3 IP protocol. It shifts the focus from host addressing
to exchanged information naming. Many ICN realizations
are request-response based, where consumers request named

1https://covesa.github.io/vehicle signal specification/
2https://github.com/rezabfil-sec/engine-framework

© IFIP, 2024. This is the author's version of the work. It is posted here by permission of 
IFIP for your personal use. Not for redistribution. The definitive version was published in 
2024 IFIP Networking Conference (IFIP Networking 2024) TENSOR Workshop, 2 June 
2024, https://dl.ifip.org/db/conf/networking2024/networking2024/index.html.



information from the producers. The network devices con-
tain routing information, data services, and forwarding logic,
facilitating the exchange and enabling the network to fulfill
consumer requests directly. ICN emphasizes security, with the
network further supporting data caching on network nodes.

While several ICN implementations exist, in this work, we
focus on NDN [11] and its C++ implementation due to its ac-
cessibility and ability to run on hardware-constrained devices.
It is also well documented, has numerous supporting tools,
and is actively maintained. NDN provides receiver-driven,
data-oriented communication architecture that can run as a
Layer 2 or 3 protocol. The communication parties exchange
two types of packets. The consumer requests information
using INTERESTS, with the producer responding using DATA

packets. Each type includes a data name, with the INTEREST

packet having additional information, e.g., desired age limit.
The DATA packet includes the content itself, a digital signature
for data integrity, and metadata such as its validity period.

These packets are forwarded using forwarder modules
placed on each NDN node. Communication is enabled using
faces, which provide an abstraction for the use of underly-
ing network protocols. A content store contains data that is
available at a given node. The Pending Interest Table (PIT)
includes information on all received INTERESTS, such as name
and incoming face. A routing table is contained within the
Forwarding Information Base (FIB), including the relation
between name prefixes and faces leading to other nodes
offering DATA. The forwarder decides how to forward and
fulfill INTERESTS based on the aforementioned information,
with DATA following the reverse path of request packets.

B. Time-Sensitive Networking

The set of IEEE 802.1Q [2] TSN standards defines methods
for low latency and reliable Ethernet communication. This
work focuses on the IEEE 802.1Qav standard, supported by
the Precision Time Protocol (PTP). For TSN, PTP is used
in the form of generic Precision Time Protocol (gPTP) as
defined in the IEEE 802.1AS standard [12]. The time on each
participating node is synchronized to a grandmaster clock,
which is placed on top of a master-slave hierarchy. In this
structure, the gPTP instances exchange messages, allowing
nodes to accurately synchronize all clocks in the network.

The Multiqueue Priority (MQPRIO) queuing discipline
(qdisc) enables mapping of packets belonging to various
Traffic Classes (TCLs) and priorities into corresponding Net-
work Interface Card (NIC) hardware queues. It is usually
paired with the Credit-Based Shaper (CBS) introduced by the
IEEE 802.1Qav standard [2] and can be used for bandwidth
allocation to various TCLs. The shaper works according to a
credit system where packets are dequeued when TCL’s credit
is ≥ 0. The amount of TCL credit over time is governed by
four parameters: idleSlope, sendSlope, hiCredit, and loCredit.
These specify the rates at which credit is accumulated and
spent during transmission and its maximal and minimal levels.
All four parameters depend on, e.g., the traffic’s Physical
Layer (PHY) packet size, bitrate, and available bandwidth.

C. The EnGINE Framework

In prior work, we built the EnGINE framework [9], an
orchestration tool for hardware-based networking experiments
based on open-source software and commercial off-the-shelf
hardware. It focuses on, but is not limited to, TSN and IVN ex-
periments. The framework is written in Ansible3 and supports
automated node setup, network configuration, traffic genera-
tion, and artifact collection and evaluation. Using appropriate
hardware, e.g., the Intel I210 NICs, EnGINE supports CBS and
TAPRIO qdiscs, as well as PTP. As part of the framework,
we also provide a methodology [13] covering relevant settings,
metrics, and result expectations for TSN experimentation. In
this work, we extend EnGINE with support for NDN.

Other TSN experimentation approaches exist such as the
TSN-FlexTest [14], focusing on evaluating the performance of
a single hardware NIC. Similar evaluation can be done using,
e.g., the OMNeT++ [15] discrete-event simulator.

D. Related Work

Prior research investigated the use of ICN for TSN. Pa-
padopoulos, et al. [6] outline the challenges of mapping NDN
into IVNs. They focus on the similarity of the VSS and
NDN names, considering benefits of caching capabilities. The
authors also outline ICN’s limitations for IVNs, pointing out
the lack of standardization, relevant in the automotive industry.

Threet, et al. [16] verify the applicability of NDN for
enhanced security in IVNs. They investigate vulnerabilities of
CAN systems and show how NDN signing schemes alleviate
various attack types. The authors show that NDN can mitigate
most attacks while highlighting the need for more research.

Nagaraj, et al. [7], [17] investigate the applicability of ICN
for Industrial Automation Control Systems (IACS). The au-
thors outline the benefits of in-network caching and investigate
cache placement in NDN-enabled IACS. They further focus
on Traffic Control Subsystem (TCS) and its impact on latency
and throughput, while highlighting the applicability of NDN
naming schemes for IACS. The authors conclude that the
NDN implementation used in their experiments did not work
correctly with the TCS, outlining the need for further research.

Moll, et al. [8], [18] investigate push-based conversational
services in ICN. They formalize the concept of PIs in NDN.
With such INTERESTS, each PIT entry may result in one or
more DATA packets. The authors show improved performance
in the push-based variant compared to the pull-based opera-
tion, specifically lowering forwarder CPU load. PIs inspired
parts of the architecture design presented in this work.

IVN architectures are also subject to extensive research.
Häckel, et al. in [1] investigate a Software Defined Network-
ing (SDN) approach combined with TSN for a zonal IVN
architecture. They utilize SDN’s matching pipeline to manage
traffic flows and integrate those with TSN traffic shaping
and policing mechanisms. The authors show that such flow
isolation enhances the security and removes the attacker’s
ability to influence the system.

3https://www.ansible.com



III. ANALYSIS AND DESIGN

Real-time systems used, e.g., in IVNs or IACS, must fulfill
strict latency and jitter requirements for high-priority flows.
Such flows generally belong to Stream Reservation (SR)
classes A and B [13]. Over a network with seven hops, these
classes require a delay lower than 2ms and 10ms, as well
as jitter of less than 125 µs and 1000 µs, respectively. Such
strict requirements are needed to ensure proper functionality
of safety-critical subsystems within IACS and IVNs.

A. State of the Art

With increasing bandwidth demands as seen, e.g., for au-
tonomous driving, we observe an increasing adaptation of
Ethernet, replacing legacy technologies such as CAN, LIN,
or MOST [1]. Generally, to achieve low delays with Ethernet
networks, traffic policing and shaping methods from the IEEE
802.1Q family of standards are applied. The settings of these
shapers consider traffic characteristics, such as the packet
generation frequency or packet size. This switch to Ethernet
further necessitates redesigning the underlying network archi-
tecture from a centralized into a zonal, decentralized one.

Ethernet addresses communication end-points. This proves
challenging in TSN systems where devices push data. Gen-
erated information is often aimed at multiple destinations,
meaning that a suitable architecture should also support a
form of multicast or pub/sub communication. This requires a
protocol on Layer 3 or above, usually combined with some
Ethernet extensions [19]. Some approaches utilize Internet
Group Management Protocol (IGMP) [20] as, e.g., OPC UA
when used for IVNs [21]. Alternatively, Ethernet multicast
may be used. Its applicability is limited as available hardware
handles a limited number of multicast groups, e.g., 16 with
the Intel I210 NIC4. The groups are further generally defined
by IGMP snooping, still relying on end-point IP addressing.

With bus technologies such as CAN bus, IVNs and IACS
generally used signals to exchange information throughout the
network [3]. The data placed on the bus are broadcast to all
receivers. These signals use message identifiers that can be
related to the type of specific information contained within
the frames. Such identifiers can extend to names associated
with transmitted information. Prominent examples include the
VSS, defining semantic names for sensor and actuator data in
IVNs. Such an approach decouples the addressing from end-
points as used, e.g., in IP, and addresses the information.

Security is not directly integrated into protocols used in
IVNs and IACS. It is generally applied through related stan-
dards, e.g., MACsec for Layer 2 or IPSec for Layer 3. Their
integration with TSN is challenging and no readily available
solutions exist [1]. This is also the case for OPC UA when
used for pub/sub, as no security profiles are available [21].

B. Initial Architecture Design

To address these challenges, we propose an ICN-based ar-
chitecture design for IACS and IVNs. Following best practices,

4https://www.intel.com/content/www/us/en/content-details/333016/intel-
ethernet-controller-i210-datasheet.html

Sensor(s)

Actuator(s)

NDN
Forwarder

Producer

Consumer
NDN

Forwarder

NDN
Forwarder

Network of
forwarders Controller(s)

Producer

Consumer

Push Data

LL Interest
Subscribe

Subscribed
Data LL Interest

Subscribe

Push Data

Subscribed
Data

Zone 2

Zone 1

Zone X

Fig. 1. Simplified overview of the proposed network architecture.

we employ Ethernet and include support for various IEEE
802.1Q standards. The timing accuracy is ensured using gPTP.
At Layer 3, we employ a modified version of NDN to connect
various consumers with producers. Data is named according
to VSS or an equivalent scheme. As indicated in Figure 1,
we follow the zonal architecture concept with all components
interconnected using a decentralized network. We assume
these components are directly connected to the forwarders.

While NDN enables information addressing, it brings fur-
ther challenges. The packet size is influenced by NDN’s
request-response behavior and additional data encoded in the
header, e.g., the name with variable length. This variance
impacts traffic shapers, e.g., CBS, which are sensitive to packet
sizes, requiring individual settings per direction to guarantee
delay and jitter. This is especially relevant for INTERESTS,
directly influencing the latency of the DATA packets.

To support pub/sub and multicast communication, we pro-
pose Long-Lived (LL) INTERESTS, a concept similar to a
minimal version of PIs [8], [18]. Both approaches extend the
NDN INTEREST with an additional type field indicating its
nature. If present, the forwarder retains the PIT entry even
after a DATA packet arrived and was forwarded. PIT entries
containing the LL flag are soft-state. Stale ones are avoided
using timeouts dictated by the interest lifetime type.

Due to the different system requirements, we approach the
push-based communication with LL INTERESTS differently
when compared to PIs. The LL INTERESTS and DATA packets
do not encode sequence numbers in the name to avoid its
bloating and improve compatibility with traffic-shaping algo-
rithms expecting consistent packet sizes. These numbers may
be included in their payload or as a separate type field in the
NDN header. The exact encoding is out of this work’s scope.

In the data-push configuration, a producer creates DATA

packets according to its traffic pattern and continuously trans-
mits those to the nearest NDN forwarder. The forwarders assist
in its distribution, forwarding the newest DATA according
to LL PIT entries. The packet’s freshness period parameter
ensures no obsolete information is distributed through the
network. This results in a targeted multicast capability, where
multiple consumers can receive a data from a single producer,
using only one INTEREST per client. Support for request-
response INTEREST to DATA exchange is retained.

Further considerations must be made for Quality of Service
(QoS) in NDN. Some solutions consider its encoding in the
name [22]. Such an approach might result in data duplication
across the network if it is available under multiple priorities.
Caching could also reduce the load introduced by non-critical



traffic streams if request-response communication is used.
However, it may significantly impact the system because the
TSN configuration is influenced by the packet generation
frequency. Investigation of caching and priority encoding is
subject to ongoing work and is out of scope for this paper.

IV. INITIAL VERIFICATION

To validate the initial architecture design, we prepare and
verify an NDN-enabled experimental environment based on
the EnGINE framework. We then extend the NDN implemen-
tation with support for LL INTERESTS. The resulting system
enables verification of ICN concept in the context of TSN and
is provided as an open-source repository5.

A. Experimental Environment

To enable experimentation on ICN-enabled TSN systems,
we extend the EnGINE framework with support for NDN, fol-
lowing the four-phase experiment execution flow of EnGINE.
In the first phase, install, the experimental nodes are booted.
The second phase, setup, is responsible for installing all
required dependencies. We extend it to install software relevant
for ICN. As we are using C++ NDN implementation, these
dependencies include the ndn-cxx6, NDN Forwarding Daemon

(NFD)7, and ndn-traffic-generator8. These are compiled from
source, enabling experimentation with modified NDN code.

The experiments are set up and executed in the third phase,
scenario. Firstly, we extend EnGINE’s experiment configura-
tion with the ability to place NFD on select nodes. We then
utilize EnGINE’s Open vSwitch-based flow configuration ca-
pabilities to enable point-to-point, NDN-enabled connections.
As outlined in Figure 2, each of these flows 1⃝ follows a
pre-defined path over a static network and terminates at se-
lected nodes with virtual flow interfaces 2⃝. The orchestration
framework automatically associates these with their respective
NFD faces 3⃝. Those are used to associate traffic flowing
through a NFD face with a Virtual LAN Priority Code Point,
as well as Linux Socket Buffer priority 4⃝. Priorities are
applied using the cgroups9 utility, specifying traffic priority
on the flow interfaces. Such arrangement enables per-face
QoS enforcement using TSN traffic shapers 5⃝, following
EnGINE’s qdisc configuration capabilities.

In the next step, the NFD content store is disabled, and
the NDN routing is configured. As indicated in Figure 2,
all reachable nodes on a given priority are associated with
an appropriate face. A similar static configuration would
typically be used in systems with deterministic guarantees.
While we defer a final design for naming, in our prototype, the
scheme always includes /node-X/prioY/data-name,
with node-X specifying the node, prioY specifying the
priority, and a data-name indicating specific DATA. This
naming scheme follows suggestions introduced in [22] and

5https://github.com/rezabfil-sec/engine-framework
6https://github.com/named-data/ndn-cxx
7https://github.com/named-data/NFD
8https://github.com/named-data/ndn-traffic-generator
9https://docs.kernel.org/admin-guide/cgroup-v2.html

can easily be adjusted in the future. To generate traffic on the
NDN-enabled nodes, we utilize a customized implementation
of the ndn-traffic-generator outlined in Section IV-B. We ab-
stract its settings, utilizing the EnGINE configuration format.

The result collection follows the EnGINE pipeline, with
packets being recorded by the tcpdump utility. To process the
recorded information, in the fourth phase, process, we modify
the pipeline that automatically parses collected packet traces
to additionally extract NDN-specific details. Collected fields
include the packet’s timestamp, type (INTEREST or DATA),
and sequence number embedded in the name or the payload
by the ndn-traffic-generator, as indicated in Section IV-B. If
the sequence number is absent, we use the nonce associated
with the packets. However, this method is not always reliable
or applicable. This information is collected and saved into a
CSV file for each defined data name on every interface in
the network. With PTP actively synchronizing clocks across
network nodes in all experiments, these files can then be
correlated to directly calculate the end-to-end delay or jitter.

B. Support for LL INTERESTS

We realize LL INTERESTS as an extension to ndn-cxx and
NFD. The LL Type-Length-Value field is implemented as an
additional description in ndn-cxx definition of INTERESTS,
alongside all required methods to set and read it. To support
these, the implementation of NDN face was also slightly
adjusted, allowing the consumer to receive multiple data
packets responding to a single INTEREST. Note that the initial
implementation does not consider or support caching.

The NFD’s INTEREST and DATA handling is enhanced
with support for the LL type. The PIT entries include a flag
indicating whether the incoming INTEREST contained the LL
type. The data forwarding pipeline is modified to not remove
LL PIT entries when they matched an incoming DATA. These
entries are only removed when an appropriate NACK packet
is received or the timer based on the interest lifetime expires.

Using ndn-traffic-generator’s ndn-traffic-server, we imple-
ment ndn-traffic-push that can generate push data traffic.
The server’s functionality is modified to only register the
name prefix with the forwarder without including the methods
usually used to react to incoming INTERESTS. The DATA

packets are then generated in a loop based on a configured
interval and subsequently sent to the NFD. Both the server
and push application are further extended to include sequence
numbers encoded in the payload. This is later used to accu-
rately correlate the DATA packets between the producer and
the consumer. We do not adjust the metrics calculation of
the ndn-traffic-generator, as we calculate relevant ones using
EnGINE’s evaluation capabilities. We further extend the ndn-

traffic-client to support generating INTERESTS with LL type
field and accept multiple returning DATA packets for each.

V. EXPERIMENTS AND EVALUATION

To validate the experimental environment and the LL IN-
TERESTS concept, we build a simple network of eight nodes
interconnected using Intel I210 NICs. Each node runs Linux



NFD

Face A
HiPrio

Face A
LowPrio

NIC

Flow A
Interface

Flow B
Interface

OvS
Switch

Virtual
VLAN

Interface

Qdisc 1

Qdisc 2

Qdisc N

Directly
connected
node

Assign lower
priority

Flow B @
PCP 2

Qdiscs police
traffic

according to
priority

Same
arrangement

repeated on the
other side

Other
Face

Other
Face

Priorities
assigned per
interface with

cgroups

Parent
Qdisc

Flow A @
PCP 3

Could also be
connected via a
simple switched

network

Two (or more) flows on
the exact same routes
between NFD faces

Route to
/RemNode/prio2/DataName

1

1
2

Assign higher
priority

2

3

3

Route to
/RemNode/prio3/DataName

4

4

5

PIT

FIB

Producer

Consumer

Enhanced with support
for Long-Lived Interests

Supports request-
response or data
push operation

Supports request-
response or Long-Lived

Interest operation

Serves, e.g,
/LocNode/prio3/DataName

Requests/Subscribes to, e.g.,
/RemNode/prio2/DataName

Fig. 2. Overview of components required to integrate per-face Layer 2 priority assignment and enforcement in EnGINE.

Producer Node 1 Node 2
NFD NFDNFD

Node 4
NFD

Node 3
NFD

PR @P3
PR @P2

Consumer
NFDC @P3

C @P2

Node 6
NFD

Node 5
NFD

 Interest

 Data

Fig. 3. Overview of the network used for experiments. C and PR indicate
consumer or producer with @PX defining their priority X .

with 5.15.0-89-lowlatency kernel on Intel Xeon E3-

1265L V2 CPU, forming a line topology with seven hops, as
shown in Figure 3, with NFDs placed on each hop. We follow
EnGINE CPU management policies and isolate the NFD and
other relevant components. We designed two experiment types
to validate the system, following the guidelines in [13]. The
first experiment uses only MQPRIO and does not apply any
traffic shaping. We then include adequate shaping on each
involved interface using the CBS. Each experiment lasts 40 s.

On the Producer, we configure two generators offering
DATA on priority 3 (higher) and priority 2 (lower). On the
Consumer, we place two clients, each requesting data on the
respective priorities. We distinguish between two scenarios.
The first one, NDN-RR, utilizes the normal NDN request-
response communication with sequence numbers encoded in
the name. The consumer sends INTERESTS every 250 µs with
PHY size of 88B. The producer fulfills the INTERESTS with
DATA of 1250B, resulting in PHY frames of up to 1373B.
In the second scenario, NDN-LL, we use our implementation
utilizing LL INTERESTS. The clients send INTERESTS every
500ms with the LL type set and size of 88B. The producer
pushes DATA packets every 250 µs with a payload of 1250B.
The sequence number is encoded in the payload, enabling
post-processing and resulting in PHY frames of 1364B.

For the CBS experiments, the shaper is configured on two
hardware queues, individually for each priority. The shaping
is set up adequately for the traffic patterns and packet sizes
expected in each direction. We verified that the respective
qdiscs shape the traffic accordingly for all experiments.

As a baseline, we run experiments with UDP traffic in the
DATA direction generated with Iperf3. The same payload of
1250B (PHY size of 1320B) every 250 µs is sent. In CBS
experiments, we configure the traffic shaper accordingly.

To validate NDN’s use with TSN, we look at end-to-end
statistics of NDN DATA and Iperf3 packets. Figure 4 shows
delay box plots, with the dashed horizontal lines representing

Fig. 4. Measured end-to-end delay in experimental environment validation

Fig. 5. Measured jitter of end-to-end delay for environment validation

2ms and 10ms target for SR classes A and B. The whiskers
are configured to show values within 1.5 times inter-quartile
range. The left half of the figure shows priority 3 and the
right one results for priority 2 traffic. We observe generally
lower latencies when Iperf3 is used, with both NDN-RR and
NDN-LL performing comparably. Most of the measured delay
values fall within the requirements of SR classes A and B.

When no shaping is used, Iperf3 on priority 3 observed an
average latency of 1.02ms, lower by 0.61ms when compared
to NDN-RR and by 0.43ms when compared to NDN-LL.
Recorded values and differences were comparable for priority
2 flows. With CBS traffic shaping, the average delay was also
lower for Iperf3 on both priorities and measured at 1.18ms.
The mean latency in NDN-RR scenario was higher by 0.24ms

and in NDN-LL by 0.37ms. Recorded values and differences
were again comparable for flows placed on priority 2.

Figure 5 shows jitter, being the variation in latency between
two consecutive packets. The figure and boxplot structure
follows this of Figure 4, with the red lines indicating the jitter
target of 125 µs and 1000 µs for SR classes A and B. We again
observe that most recorded values fall within the respective



requirements of each class. While we notice generally higher
jitter in NDN experiments, when the traffic was policed with
CBS, the jitter for Iperf3 flows was significantly lower.

Comparing the experiments further shows the overhead
reduction. In NDN-RR, each consumer on each priority gen-
erated INTERESTS at a rate of 2816.05 kbit/s. For NDN-LL,
this was reduced to 1.43 kbit/s. The bitrate ratio of DATA per
INTEREST is improved from 15.6 in NDN-RR to 30 610 in
NDN-LL. We also observe a significant change in ratios of
packet numbers from 1 to 2000 DATA packets per INTEREST.
Those values are specific to this scenario and will differ when
different payload sizes and traffic patterns are used.

We believe that NDN combined with TSN traffic shaping is
a feasible approach to the realization of an ICN-enabled real-
time system. We observe a somewhat worse performance of
NDN when compared with IP-based results using Iperf3. The
classic NDN implementation performs similarly to that with
LL INTERESTS, indicating that push-based traffic generation
does not negatively impact the system. However, the NDN
implementations present a worst-case scenario as its code is
executed in user space. With a kernel-space or hardware-based
implementation of the forwarder, we would likely observe
improved fulfillment of SR class A and B requirements.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduced a hardware-based environment
for the assessment of ICN-based solutions in TSN systems.
Our solution is based on the open-source EnGINE frame-
work, into which we integrate support for NDN. Using this
environment, we show that NDN is a promising alternative to
IP, fulfilling the requirements of 2ms delay and 125 µs jitter
for most recorded values. We further proposed an ICN-based
architecture for time-sensitive networks. The architecture aims
to ease the interaction with or migration from legacy bus
systems to TSN-based Ethernet networks. Utilizing long-lived
interests, we enable a pub/sub-like behavior in NDN, reducing
the overhead of otherwise used request-response exchanges.
Being ICN-based, the architecture supports content addressing
with named message identifier schemes such as VSS.

In the future, the correlation of named traffic with TCL
priorities should be investigated further. Adequate priority
encoding could also improve caching support. Best-effort and
lower-priority consumers could benefit from such cached data
on the forwarders, minimizing the overhead of their request-
response communication. Routing is another aspect requiring
further investigation. The currently considered static case
should be extended with dynamic routing. Route reconfig-
uration is especially relevant for safety in systems such as
IVNs. These networks must quickly react to failures while
maintaining support for safety-critical functions.

ACKNOWLEDGMENT

This work was supported by the German Federal Ministry
of Education and Research joint project 6G-life (16KISK002).
We thank Atacan Iyidogan for his support implementing NDN
into the EnGINE framework.

REFERENCES

[1] T. Häckel, P. Meyer, F. Korf, and T. C. Schmidt, “Secure time-
sensitive software-defined networking in vehicles,” IEEE Transactions
on Vehicular Technology, vol. 72, no. 1, pp. 35–51, 2023.

[2] “Ieee standard for local and metropolitan area networks–bridges and
bridged networks,” IEEE Std 802.1Q-2022, pp. 1–2163, 2022.

[3] R. B. GmbH, “Can specification version 2.0,” Stuttgart, Germany, 1991.
[4] L. L. Bello and W. Steiner, “A perspective on ieee time-sensitive

networking for industrial communication and automation systems,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1094–1120, 2019.

[5] R. A. Peña, M. Pascual, A. Astarloa, D. Uribe, and J. Inchausti, “Impact
of macsec security on tsn traffic,” in 2022 37th Conference on Design
of Circuits and Integrated Circuits (DCIS), 2022, pp. 01–06.

[6] C. Papadopoulos, S. Shannigrahi, and A. Afanaseyv, “In-vehicle net-
working with ndn,” in Proceedings of the 8th ACM Conference on
Information-Centric Networking, New York, USA, 2021, p. 127–129.

[7] A. H. Nagaraj, M. P. Tahiliani, D. Tandur, and H. Satheesh, “Leveraging
named data networking for industrial automation: Opportunities and
challenges,” in 2020 IEEE International Conference on Communications
Workshops (ICC Workshops), 2020, pp. 1–6.

[8] P. Moll, D. Posch, and H. Hellwagner, “Investigation of push-based
traffic for conversational services in named data networking,” in 2017
IEEE International Conference on Multimedia & Expo Workshops
(ICMEW). IEEE, 2017, pp. 315–320.

[9] F. Rezabek, M. Bosk, T. Paul, K. Holzinger, S. Gallenmüller, A. Gon-
zalez, A. Kane, F. Fons, Z. Haigang, G. Carle, and J. Ott, “Engine:
Flexible research infrastructure for reliable and scalable time sensitive
networks,” Journal of Network and Systems Management, vol. 30, no. 4,
p. 74, 2022.

[10] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo, D. Saucez,
T. C. Schmidt, and M. Wählisch, “Information-Centric Networking
(ICN) Research Challenges,” RFC 7927, Jul. 2016.

[11] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, p. 66–73, jul 2014.

[12] “Ieee standard for local and metropolitan area networks–timing and
synchronization for time-sensitive applications,” (2020).

[13] M. Bosk, F. Rezabek, K. Holzinger, A. G. Marino, A. A. Kane, F. Fons,
J. Ott, and G. Carle, “Methodology and infrastructure for tsn-based
reproducible network experiments,” IEEE Access, vol. 10, pp. 109 203–
109 239, 2022.

[14] M. Ulbricht, S. Senk, H. K. Nazari, H.-H. Liu, M. Reisslein, G. T.
Nguyen, and F. H. P. Fitzek, “Tsn-flextest: Flexible tsn measurement
testbed,” IEEE Transactions on Network and Service Management, pp.
1–1, 2023.

[15] A. Varga, “Omnet++,” Modeling and tools for network simulation, pp.
35–59, 2010.

[16] Z. Threet, C. Papadopoulos, W. Lambert, P. Podder, S. Thanasoulas,
A. Afanasyev, S. Ghafoor, and S. Shannigrahi, “Securing automotive
architectures with named data networking,” in 2022 IEEE 25th Interna-
tional Conference on Intelligent Transportation Systems (ITSC), 2022,
pp. 2663–2668.

[17] A. H. Nagaraj, B. Kataria, A. Sohoni, M. P. Tahiliani, D. Tandur, and
H. Satheesh, “On the importance of traffic control subsystem in icn-
based industrial networks,” in 2020 IEEE International Conference on
Advanced Networks and Telecommunications Systems (ANTS), 2020.

[18] P. Moll, S. Theuermann, and H. Hellwagner, “Persistent interests in
named data networking,” in 2018 IEEE 87th Vehicular Technology
Conference (VTC Spring). IEEE, 2018, pp. 1–5.

[19] S. E. Deering, “Host extensions for IP multicasting,” RFC 1112, Aug.
1989. [Online]. Available: https://www.rfc-editor.org/info/rfc1112

[20] B. Fenner, H. He, B. Haberman, and H. Sandick, “Internet Group
Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-
Based Multicast Forwarding (”IGMP/MLD Proxying”),” RFC 4605,
Aug. 2006. [Online]. Available: https://www.rfc-editor.org/info/rfc4605

[21] B. Leander, B. Johansson, T. Lindström, O. Holmgren, T. Nolte, and
A. V. Papadopoulos, “Dependability and security aspects of network-
centric control,” in 2023 IEEE 28th International Conference on Emerg-
ing Technologies and Factory Automation (ETFA). IEEE, 2023, pp. 1–8.

[22] I. Moiseenko and D. R. Oran, “Flow Classification in
Information Centric Networking,” Jan. 2021. [Online]. Available:
https://datatracker.ietf.org/doc/draft-moiseenko-icnrg-flowclass/07/


