
Chair of Connected Mobility
TUM School of Computation, Information and Technology
Technical University of Munich

Open Source Lab
CI/CD

Fabian Sauter, Christian Menges, Alexander Stephan

Chair of Connected Mobility
TUM School of Computation, Information and Technology
Technical University of Munich

Garching, November 6, 2024

CI / CD

Continuous integration is a DevOps software development practice where developers regularly merge their code changes into
a central repository, after which automated builds and tests are run. Continuous integration [. . .] entails both an automation
component (e.g. a CI or build service) and a cultural component (e.g. learning to integrate frequently). The key goals of
continuous integration are to find and address bugs quicker, improve software quality, and reduce the time it takes to validate
and release new software updates.

https://aws.amazon.com/devops/continuous-integration/

Prerequisite: being able to define a consistent environment to ensure that programs not only work on the machine of the
developer, but also on the testing server and at the customer.

Solution: Virtualization

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 2

https://aws.amazon.com/devops/continuous-integration/
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

Virtualization

■ Virtual machine

Pro:
□ Works on every machine with a hypervisor
□ Very secure

Con:
□ Huge Overhead: Size and performance

For most applications, it is irrelevant what the OS kernel does internally, it is only relevant what the OS lets the application see
and do.

Idea: Use the same kernel, but provide different resources (file system tree, networks, ...) to different processes.

■ Containers

Pro:
□ Lightweight: small + fast

Con:
□ A bug in the kernel can compromise the whole system
□ Requires different image variants for different architectures (x86, arm, ...)

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 3

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

Virtualization

■ Virtual machine

Pro:
□ Works on every machine with a hypervisor
□ Very secure

Con:
□ Huge Overhead: Size and performance

For most applications, it is irrelevant what the OS kernel does internally, it is only relevant what the OS lets the application see
and do.
Idea: Use the same kernel, but provide different resources (file system tree, networks, ...) to different processes.

■ Containers

Pro:
□ Lightweight: small + fast

Con:
□ A bug in the kernel can compromise the whole system
□ Requires different image variants for different architectures (x86, arm, ...)

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 3

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

Terminology

Image Definition of environment and data (binaries, etc.)

■ Consists of layers. This allows to avoid rebuilding the whole image by caching layers.
Thus, order the layers from stable to frequently changing.

Container Running image

Registry Image storage (e.g. dockerhub)

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 4

https://hub.docker.com/
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

Docker

■ Most famous container platform

■ Docker daemon, dockerd, manages Containers

■ Website: https://www.docker.com/

Logo: https://www.docker.com/sites/default/files/d8/2019-07/Moby-logo.png

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 5

https://www.docker.com/
https://www.docker.com/sites/default/files/d8/2019-07/Moby-logo.png
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

Dockerfile

Most important commands:

FROM Specifies a base image (use scratch if no base image is required).

RUN Runs a command.

COPY Copies data from the host or another container into the image.

ADD Similar to copy, but allows extraction of archives and URLs as source.

ENV Sets one or more environment variables (format: key=value).

USER Changes the user (Does not create a new user).

ENTRYPOINT Specifies a command which is always invoked during container start.

CMD Specifies a default command, which is invoked during container start. In conjunction with
ENTRYPOINT, the specified commands are interpreted as arguments of ENTRYPOINT.

...

Important: The default user of a Docker image is root. Use the USER command to use a less privileged user.

RUN, ENTRYPOINT and CMD allow to specify a command as string, which is interpreted in a shell, or as string array
["command", "param_1", ...], which will invoke the command directly.

Dockerfile reference: https://docs.docker.com/engine/reference/builder/

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 6

https://docs.docker.com/engine/reference/builder/
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

Dockerfile - Example

FROM alpine:latest

RUN apk add --no-cache htop

ENTRYPOINT ["htop"]

Selection of base image is crucial for the image size (alpine ⇒ small, Ubuntu/Debian ⇒ big)

Cleanup installation artifacts to reduce image size

Dockerfile linter: Hadolint

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 7

https://github.com/hadolint/hadolint
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

Build & Run Image

Build image:

docker build -t <tag> <path to dir with Dockerfile>

Start a new container based on an image specified by tag:

docker run <tag>

Run image in interactive mode (-it) and mount <host dir> to <container dir> (---rm removes the container after
execution (not required)):

docker run --rm -it -v <host dir>:<container dir> <tagname>

Example: Run image libfuse and mount current directory ($(pwd)) to /libfuse:

docker run --rm -it -v $(pwd):/libfuse libfuse

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 8

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

Docker Cheat Sheet

Show logs (stdout/stderr) of container:

docker logs <container id>

Execute command in container

docker exec <container id> <command>
docker exec -ti <container id> <command> // interactive, useful for sh, bash, etc.

Remove terminated container

docker rm <container id>

Remove image

docker rmi <image id>

Copy files between host and container FS:

docker cp <path> <container id>:<path> // host -> container
docker cp <container id>:<path> <path> // container -> host

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 9

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

Practice - Open Source Lab Dice

1. Clone https://gitlab.lrz.de/open-source-lab/dice

2. Write a Dockerfile, which compiles the executable and runs the program on container start.

Hints:

■ Build instructions can be found in README.md

■ Use golang:1.23-alpine3.20 as base image

■ Expose container port using -p 8080:8080 with docker run

5 Minutes

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 10

https://gitlab.lrz.de/open-source-lab/dice
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

Remarks

In case multiple containers should be run together, use docker-compose. E.g. Webserver + Database

For production use, Docker is mostly not sufficient. Consider using Kubernetes (https://kubernetes.io/)

Besides Docker, there are many other projects to create, manage and run containers. E.g. podman (https://podman.io/)

Future of Containers unknown. Although it is in widespread use, it has significant drawbacks such as potentially huge image
sizes, a universal kernel and a big attack surface. Maybe Library OSs will be the future of containerized execution.

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 11

https://kubernetes.io/
https://podman.io/
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

CI/CD

■ ALWAYS perform changes to CI/CD scripts in a separate branch, because very often multiple attempts are needed to get
it running.

■ NEVER hardcode secrets or passwords into your scripts. Inject them using the surrounding system.

■ For any project which should last longer, set it up properly. This will safe you a lot of time later.

■ Carefully choose a system, since they are barely interchangeable.

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 12

mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

Dependabot

Example configuration file for Rust, /.github/dependabot.yml:

version: 2
updates:

- package-ecosystem: "cargo" # Enable crate version updates for the main crate
directory: "/" # Look ‘Cargo.toml‘ in the repository root
schedule: # Check for updates every day (weekdays)

interval: "daily"
- package-ecosystem: "github-actions" # Enable version updates for Github Actions
directory: "/" # Set to ‘/‘ to check the Actions used in ‘.github/workflows‘
schedule: # Check for updates every day (weekdays)

interval: "daily"

See
https://docs.github.com/en/free-pro-team@latest/github/administering-a-repository/enabling-and-disabling-version-updates
for details.

Alternative: Renovate https://github.com/renovatebot/renovate

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 13

https://docs.github.com/en/free-pro-team@latest/github/administering-a-repository/enabling-and-disabling-version-updates
https://github.com/renovatebot/renovate
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

Source:
https://github.com/
Garfield96/pack/pull/3

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 14

https://github.com/Garfield96/pack/pull/3
https://github.com/Garfield96/pack/pull/3
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

1 name: CI
2
3 on: [push, pull_request]
4
5 jobs:
6 build:
7 runs-on: ubuntu-latest
8 container: texlive/texlive:latest
9

10 steps:
11 - uses: actions/checkout@v4
12
13 - name: Build pdf
14 run: make pdf
15
16 - name: Upload pdf
17 uses: actions/upload-artifact@v3
18 with:
19 name: thesis
20 path: build/main.pdf
21 if-no-files-found: error
22 retention-days: 14

Github CI

Workflow file *.yml:
always located in:
/.github/workflows/

Can be executed locally using
https://github.com/nektos/act

Source: https://github.com/TUM-Dev/tum-thesis-latex/blob/master/.github/workflows/github-actions-demo.yml

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 15

https://github.com/nektos/act
https://github.com/TUM-Dev/tum-thesis-latex/blob/master/.github/workflows/github-actions-demo.yml
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

1 default:
2 image:
3 name: texlive/texlive:latest
4 tags:
5 - Docker
6
7 stages:
8 - build
9

10 pdf:
11 stage: build
12 script:
13 - make all
14 artifacts:
15 paths:
16 - main.pdf
17 expire_in: 1 week

GitLab CI

.gitlab-ci.yml:
always located in:
/ (project root)

Source: https://gitlab.lrz.de/gbs-cm/skript/-/blob/master/.gitlab-ci.yml

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 16

https://gitlab.lrz.de/gbs-cm/skript/-/blob/master/.gitlab-ci.yml
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

Jenkins

■ Automation server

■ Jobs are defined using a DSL inside a Jenkinsfile

■ MIT License

■ www.jenkins.io

■ Repository: https://github.com/jenkinsci/jenkins

Logo: https://www.jenkins.io/images/logo.png

Fabian Sauter, Christian Menges, Alexander Stephan | Open Source Lab | opensourcelab@cm.in.tum.de | https://zulip.in.tum.de (#Open Source Lab WS24) 17

www.jenkins.io
https://github.com/jenkinsci/jenkins
https://www.jenkins.io/images/logo.png
mailto:opensourcelab@cm.in.tum.de
https://zulip.in.tum.de/#narrow/stream/2177-Open-Source-Lab-WS24

