Chair of Connected Mobility TUM School of Computation, Information and Technology Technische Universität München

WS 2024/25 Master Practical Course: Computer Network Simulation

Pre-Meeting 09.07.2024

Marcin Bosk Mehmet Mert Bese

ТШП

What is a Simulation?

In most basic terms

 \rightarrow "imitation of a real-world process or system"

Advantages

- Less Financial Risk (avoid costly mistakes)
- Gain Insights on System Behaviour
- Test Non-Standard Situations
- Examine Long-Term Impacts

Why do we use network simulation?

- Testing and prototyping for new ideas
- Experimentation when it's infeasible to build new network infrastructure
- Verification of things that cannot be run in a testbed environment
- Method for rapid prototyping

Optimum Network Performance

ТШП

Focus of the Course (Study Goals)

- Understand the usefulness of the simulation in the computer networking field
- Learn how to operate simulator software and extend it on the example of OMNeT++
- Learn how to obtain and visualize meaningful results
- Learn cutting-edge networking technologies
- Understand the limitations of simulation

FLoRaSat

Course Contents Networking Technologies

General Computer Networking Recap

ΠП

- Various Networked Applications
- 5th Generation Mobile Networks (5G)
- Edge Computing
- Time-Sensitive Networking (TSN)
- LEO Constellation Satellite Communication

Structure of the Course

- ~5 weeks of lectures covering
- Introduction to Simulation Environment
- Computer Networking Recap
- Introduction of Relevant Technologies [Edge Computing, 5G, TSN, etc.]
- Three graded <u>individual</u> homework and feedback discussion sessions!

- ~10 weeks of project work in groups of 3 people
- You can choose your project out of our suggestions or propose your own
- Use OMNeT++ and custom modules implemented by you to simulate a complex network
- Provide visualized results covering various metrics
- Three mandatory presentations
 - Initial project meeting and discussion
 - Mid-term project meeting and discussion
 - Final project presentation

Structure of the Course

- Five Lecture Weeks
- ~Ten Weeks of Project Work

Week 1 (25.10.2024)

Lecture – Introduction to Discrete Event Simulation and OMNeT++ Simulator

A hands-on exercise with OMNeT++

First homework handout (2 weeks, submission 07.11.2024)

Week 3 (08.11.2024)

Lecture – Computer Networking Recap and Introduction to the INET Framework

First Homework Discussion and Feedback

Second homework handout (2 weeks, submission 21.11.2024)

Week 4 (15.11.2024)

Lecture – 5th Generation Mobile Networks and Introduction to the Simu5G Framework

Lecture – Introduction into 5G Radio

Lecture – Introduction to Advanced Networking Concepts

Timeline subject to change

Structure of the Course

- Five Lecture Weeks
- ~Ten Weeks of Project Work

 \rightarrow

Week 5 (22.11.2024)

Lecture – Excursion on Time-Sensitive Networking

Lecture – Excursion on LEO Constellations

Second Homework Discussion and Feedback Third homework handout (1 week, submission 28.11.2024)

Week 10/11 (~17.01.2025)

 \rightarrow

Mid-term project meeting and discussion

Final project presentations

Timeline subject to change

ТШП

Project Work

Use OMNeT++ as a simulation tool to implement and validate a networking concept

→ Implement a new/enhanced concept into OMNeT++

Your testing environment and application must include

- Custom modules implemented by you
- Mobility of users and wireless networks (5G
- Automatic execution and processing pipeline
- Multiple distinct experimentation scenarios

You can choose your topic!

We will offer specific topics you can work on

You can propose your own topics

TUM School of Computation, Information and Technology | Technische Universität München

Total of 100 points

30 points for homework assignments

Project Work And Grading

70 points for the project assignment

- 2 points → initial presentation
- 3 points → mid presentation
- 10 points → final presentation
- 10 points → final report
- 45 points → implementation, including demo and idea realization

Projects done in groups of 3 students Your project submission will cover

- 3 presentations
- code
- final report

Course Registration

Registration using the matching system

Duration: <u>12.07.2024 – 16.07.2024</u>

To increase your chances, please send us your CV and a short motivation letter!

- Email: bosk@in.tum.de mehmetmert.bese@tum.de
- Always address your messages to both emails!

ПП 1110 ignature

TUM School of Computation, Information and Technology | Technische Universität München

In Case of Acceptance

 We will contact you between 25.07.2024 and 09.08.2024 with more information

- Course deregistration possible until 30.09.2024
- You will get a failing grade for the course if you get a place and not deregister!
- We will register you for the course in TUMOnline in the beginning of October

ТИП

Thanks for attending! Any questions?

Feel free to contact us! Marcin – <u>bosk@in.tum.de</u> Mert – <u>mehmetmert.bese@tum.de</u>

TUM School of Computation, Information and Technology | Technische Universität München