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What is LoRa?

Wireless modulation technique

−Long range (up to 15 km) 

−Low power consumption (mJ)

−Low data rate (bytes/s)

Popular in low power IoT deployments

−Can run on batteries for years

−Collision-prone due to long time on air

− Improved LoRa on RIOT
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Outline

 Decoding LoRa 

 A deep Learning with ML

 Augmenting Analytics with some Learning

 Lessons Learned
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LoRa Decoding
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LoRa Collision
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Goal
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Decoding Colliding Frames

Baseline LoRa decoder may fail under collisions

Active area of research 

• Colora – INFOCOM’20

• CIC – SIGCOMM’21

• NELoRa – SenSys’21

• TnB – CoNEXT’22

Machine learning techniques considered promising 

method to boost signal recovery 
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Data Samples
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First Insight

Prof. Dr. Thomas C. Schmidt

• Finding the full sine wave is harder than expected

− LoRa collisions yield a complex frequency spectrum

− Hard to unravel using conventional signal processing techniques

• Potential of Machine Learning techniques for decoding LoRa frames
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Convolutional Neural Networks - CNN

Good at finding patterns in data … let’s train a CNN 
to find the longest sine wave in the dechirped symbol

CNN Symbol Classifier Evaluation: 

• Time domain as input

− Does not converge

• Spectrogram (STFT) as input

− Worse than baseline decoder

• Frequency spectrum (FFT) as input

− Does not detect symbols with collisions 

− But performs slightly better than baseline decoder
Prof. Dr. Thomas C. Schmidt



12

Need more features?
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Aftermath of CNN Classifier

Some features yield slightly better accuracy 

than the baseline decoder

• At the cost of high computational complexity

• The classifier works best for symbols without collision

Gains are not enough to justify the complexity
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Adjust the Focus to Something Promising

Peak Classification

• Retrain CNN to peak probabilities 

• Expensive … but worse than baseline decoder

Denoiser Autoencoder

• Train a neural network to remove noise from frequency domain

• Improves SNR … but distorts phase
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Last Hope: Simple Math

We observe

• A true signal is either symmetric or anti-symmetric

• Half-Period Discriminator (HDP) identifies symmetry properties

• Magnitude of a true peak is similar to preamble peaks

• Peak Magnitude Deviation (PMD) evaluates the differences in peak 

heights

• Bayesian classifier serves as likelihood estimator from HDP and PMD

• Posterior probability derived from simulations
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Results
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Decoding of recorded 

traffic (CIC dataset)

►Spreading factor 8

►Coding rate 4/5

►Bandwidth: 

250 KHz
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Results (2)
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Simulated LTE 

channel models

►Extended Typical 

Urban (ETU)

►Flat fading

►Bandwidth: 

125 KHz

►15 pkt/s
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Operational Complexity
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Post Mortem Analysis

Overall, we spent six months in exploring, 

training, and twisting ML models

Was it worth it?

Yes!

• Learned much about Deep Learning

• Acquired much deeper insight into the

problem from analyzing the flops

• Can reasonably claim:

ML is Not a Silver Bullet
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ML is Not a Silver Bullet
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Conclusions

Intense struggle with data helped us to deeply learn about LoRa signals

Insides inspired analytic approach

Simple math approach did the job better and faster

But: With the Bayesian estimator, we can still claim to use ML!
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Backup: Bayesian Posterior Probability
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