

A Quantum of QUIC: Dissecting Cryptography with Post-Quantum Insights

Marcel Kempf, Nikolas Gauder, Benedikt Jaeger, Johannes Zirngibl, Georg Carle

Tuesday 15th October, 2024

Munich Internet Research Retreat Raitenhaslach 2024

Chair of Network Architectures and Services School of Computation, Information, and Technology Technical University of Munich

ТШ

- Traditional asymmetric cryptography will be broken by quantum computers!
 - > Post-quantum cryptography (PQC) algorithms exist
 - > NIST competition: winners will be standardized

© Erik Lucero, Google Quantum AI

- Traditional asymmetric cryptography will be broken by quantum computers!
 - > Post-quantum cryptography (PQC) algorithms exist
 - > NIST competition: winners will be standardized
- > PQC also comes with drawbacks
 - > Significantly larger keys
 - > More messages to exchange

© Erik Lucero, Google Quantum AI

- Traditional asymmetric cryptography will be broken by quantum computers!
 - > Post-quantum cryptography (PQC) algorithms exist
 - > NIST competition: winners will be standardized
- > PQC also comes with drawbacks
 - > Significantly larger keys
 - > More messages to exchange
- > And why should we care now?
 - > "Store now, decrypt later" attacks
 - > Understand PQC in practice

© Erik Lucero, Google Quantum Al

- Traditional asymmetric cryptography will be broken by quantum computers!
 - > Post-quantum cryptography (PQC) algorithms exist
 - > NIST competition: winners will be standardized
- > PQC also comes with drawbacks
 - > Significantly larger keys
 - > More messages to exchange
- > And why should we care now?
 - > "Store now, decrypt later" attacks
 - Understand PQC in practice
- > QUIC is the new general-purpose transport protocol
 - > QUIC includes TLS 1.3 and enforces encryption
 - > Encryption and authentication, packet & header protection

© Erik Lucero, Google Quantum Al

- > How much does QUIC's cryptography affect the performance?
- > How big is the impact of the different security features?
- > How does this change with PQC?
- > Does the integration of PQC into QUIC lead to problems?

Background

What is QUIC?

- New protocol designed as replacement for TCP/TLS
- Standardized in May 2021 by the IETF as RFC 9000
- Implemented in user space on top of UDP
- Several implementations exist
- Includes multiple TCP features and TLS 1.3

Applications of QUIC:

- Transport protocol for HTTP/3
- MASQUE (Apple iCloud Private Relay, Cloudflare WARP)

4

Background

The QUIC Handshake

Asymmetric cryptography only in blue parts:

- Client/ServerHello affected by PQ key encapsulation mechanisms
- Certificate(Verify) affected by PQ signature schemes

пп

Related Work

Paper	Content
[Jaeger23]	 Performance analysis of QUIC implementations on physical hardware Impact of cryptographic operation broadly analyzed
[Yang20]	 Performance analysis of QUIC implementations NIC offloading context
[Sosnowski2	 Comparison of post-quantum cipher suites Physical hardware + network emulation TCP as transport protocol
This paper	 Deep performance analysis of cryptography in QUIC Measurements on physical hardware & links Symmetric and asymmetric cryptography covered
[Jaeger23] [Yang20]	B. Jaeger et al. "QUIC on the Highway: Evaluating Performance on High-rate Links", IFIP Networking 2023 X. Yang et al. "Making QUIC Quicker With NIC Offload", EPIQ 2020
[Sosnowski23]	M. Sosnowski et al. "The Performance of Post-Quantum TLS 1.3", CoNEXT 2023

Framework for QUIC Performance Measurements

Modified QUIC Interop Runner

- Dedicated physical hosts for client and server
- Experiment orchestration via pos [1]
- Collect CPU, OS, and NIC metrics using various tools
- Flexibility, Portability, Reproducibility

Custom TLS Libraries

- NOOP cipher implemented into OpenSSL and BoringSSL
 - No encryption/decryption happening
 - Only memcpy() operation
- Fork of BoringSSL [2] for post-quantum ciphers
- [1] S. Gallenmüller et al., "The pos Framework: A Methodology and Toolchain for Reproducible Network Experiments, CoNEXT 2021
- [2] https://github.com/open-quantum-safe/boringssl

Framework for QUIC Performance Measurements

Evaluated Implementations

Name	Language	Developer	TLS Library	No-Crypto Mode
LSQUIC	C	LiteSpeed Technologies	BoringSSL	×
quiche	Rust	Cloudflare	BoringSSL	×
MsQuic	C	Microsoft	OpenSSL	√

ΠП

Symmetric Cryptography in QUIC – CPU Time Consumption

- Packet protection and header protection
- CPU profiling with perf
- AES, ChaCha20 and NOOP cipher analyzed
 - ChaCha20: 9 % to 16 % slower than AES
 - NOOP: 10 % to 20 % faster than AES

Symmetric Cryptography in QUIC – CPU Time Consumption

- Packet protection and header protection
- CPU profiling with perf
- AES, ChaCha20 and NOOP cipher analyzed
 - ChaCha20: 9 % to 16 % slower than AES
 - NOOP: 10 % to 20 % faster than AES

Take-away Result:

- QUIC's header protection is basically free, especially with AES
- Performance impact of AES key size is negligible

Marcel Kempf — A Quantum of QUIC: Dissecting Cryptography with Post-Quantum Insights

CPU Time Consumption for AES-128

ТШ

9

ТЛП

Evaluation

- Used to transmit keys for symmetric cryptography
- Kyber, BIKE and HQC analyzed
 - Kyber selected for standardization by NIST
 - Kyber was renamed to ML-KEM
- RSA-2048 certificate used for measurements
- Elliptic curve Diffie-Hellman Exchange (ECDHE) as baseline (**bold**)

- Used to transmit keys for symmetric cryptography
- Kyber, BIKE and HQC analyzed
 - Kyber selected for standardization by NIST
 - Kyber was renamed to ML-KEM
- RSA-2048 certificate used for measurements
- Elliptic curve Diffie-Hellman Exchange (ECDHE) as baseline (**bold**)

		TTFB	[ms]
	Algorithm	LSQUIC	quiche
I	X25519	3.91	3.57
	Kyber512	4.08	3.39
	BIKE-L1	6.59	5.86
	HQC-128	5.57	4.21
	P-256	3.90	3.49
	P-256 + Kyber512	4.43	3.74
	P-256 + BIKE-L1	6.95	6.27
	P-256 + HQC-128	5.99	4.52
Ш	Kyber768	4.23	3.78
	BIKE-L3	11.75	10.49
	HQC-192	7.57	4.81
	P-384	7.36	6.76
	P-384 + Kyber768	8.99	8.67

- Used to transmit keys for symmetric cryptography
- Kyber, BIKE and HQC analyzed
 - Kyber selected for standardization by NIST
 - Kyber was renamed to ML-KEM
- RSA-2048 certificate used for measurements
- Elliptic curve Diffie-Hellman Exchange (ECDHE) as baseline (**bold**)

		TTFB	[ms]
	Algorithm	LSQUIC	quiche
	X25519	3.91	3.57
l	Kyber512	4.08	3.39
	BIKE-L1	6.59	5.86
	HQC-128	5.57	4.21
	P-256	3.90	3.49
	P-256 + Kyber512	4.43	3.74
	P-256 + BIKE-L1	6.95	6.27
	P-256 + HQC-128	5.99	4.52
Ш	Kyber768	4.23	3.78
	BIKE-L3	11.75	10.49
	HQC-192	7.57	4.81
	P-384	7.36	6.76
	P-384 + Kyber768	8.99	8.67

- Used to transmit keys for symmetric cryptography
- Kyber, BIKE and HQC analyzed
 - Kyber selected for standardization by NIST
 - Kyber was renamed to ML-KEM
- RSA-2048 certificate used for measurements
- Elliptic curve Diffie-Hellman Exchange (ECDHE) as baseline (**bold**)

		TTFB	[ms]	
	Algorithm	LSQUIC	quiche	
I	X25519	3.91	3.57	
	Kyber512	4.08	3.39	
	BIKE-L1	6.59	5.86	
	HQC-128	5.57	4.21	
	P-256	3.90	3.49	
	P-256 + Kyber512	4.43	3.74	
	P-256 + BIKE-L1	6.95	6.27	
	P-256 + HQC-128	5.99	4.52	
	Kyber768	4.23	3.78	
	BIKE-L3	11.75	10.49	_
	HQC-192	7.57	4.81	
	P-384	7.36	6.76	\supset
	P-384 + Kyber768	8.99	8.67	_

- Used to transmit keys for symmetric cryptography
- Kyber, BIKE and HQC analyzed
 - Kyber selected for standardization by NIST
 - Kyber was renamed to ML-KEM
- RSA-2048 certificate used for measurements
- Elliptic curve Diffie-Hellman Exchange (ECDHE) as baseline (**bold**)

	Algorithm	TTFB	[ms]	
		LSQUIC	quiche	
1	X25519	3.91	3.57	
\square	Kyber512	4.08	3.39	
	BIKE-L1	6.59	5.86	
	HQC-128	5.57	4.21	
	P-256	3.90	3.49	
\square	P-256 + Kyber512	4.43	3.74	
	P-256 + BIKE-L1	6.95	6.27	
	P-256 + HQC-128	5.99	4.52	
	Kyber768	4.23	3.78	
	BIKE-L3	11.75	10.49	
	HQC-192	7.57	4.81	
	P-384	7.36	6.76	
	P-384 + Kyber768	8.99	8.67	

PQC – Key Encapsulation Mechanisms

- Used to transmit keys for symmetric cryptography
- Kyber, BIKE and HQC analyzed
 - Kyber selected for standardization by NIST
 - Kyber was renamed to ML-KEM
- RSA-2048 certificate used for measurements
- Elliptic curve Diffie-Hellman Exchange (ECDHE) as baseline (**bold**)

Take-away Results:

- Kyber is the fastest KEM
 - Lattice-based \rightarrow small key sizes
 - Even faster than ECDHE for NIST level III and V
- Hybrid approaches only marginally slower than pure post-quantum KEMs

		TTFB	[ms]	
	Algorithm	LSQUIC	quiche	
1	X25519	3.91	3.57	
	Kyber512	4.08	3.39	
	BIKE-L1	6.59	5.86	
	HQC-128	5.57	4.21	
	P-256	3.90	3.49	
	P-256 + Kyber512	4.43	3.74	
	P-256 + BIKE-L1	6.95	6.27	
	P-256 + HQC-128	5.99	4.52	
	Kyber768	4.23	3.78	
	BIKE-L3	11.75	10.49	
	HQC-192	7.57	4.81	
	P-384	7.36	6.76	
	P-384 + Kyber768	8.99	8.67	

PQC – Problems with QUIC

- · Some algorithms (especially hash-based signature schemes) have large signature sizes
- Handshake messages might spread over multiple packets
 - Amplification attack mitigation can cause an extra RTT
 - Implementation specific attack prevention might close the connection
- · Some algorithms (especially code-based key encapsulation mechanisms) are computationally expensive
 - The client might need some milliseconds to process the ServerHello
 - The server might retransmit the ServerHello, assuming packet loss

Conclusion

Take Away Messages

- Hardware-accelerated AES is the fastest
- > QUIC's header protection is basically free, especially with AES
- > Integration of post-quantum cryptography is feasible
 - > no major changes required thanks to *BoringSSL* fork
- PQ has promising candidates (Kyber, Dilithium) with comparable performance to traditional algorithms
- > Large certificates lead to several issues in our experiments

Framework

> Source code publicly available

Paper:

Source Code:

https://arxiv.org/pdf/2405.09264

https://github.com/tumi8/guic-crypto-paper

Backup Slides

QUIC Implementations - Performance Comparison

NIST Levels

NIST's quantum security strength categories		
NIST Level	At least as hard to break as	Type of attack
I	AES-128	Exhaustive key search
П	SHA-256	Collision search
III	AES-192	Exhaustive key search
IV	SHA-384	Collision search
V	AES-256	Exhaustive key search

Measurement and Analysis Workflow

Measurement Workflow

- 1. Setup client and server host
- 2. Configure OS parameters
- 3. Start QUIC server and client
- 4. Reset OS parameters
- 5. Collect results

Analysis Pipeline

- Tools have various output formats
- Collect and parse available result files
- Export via Pandas as CSV
- Results contain meta data like version hashes for reproducibility

пп