Chair of Connected Mobility School of Computation, Information and Technology **Technical University of Munich**

SCALE: Service-Centric Adaptive Load Balancing in Edge Time-Varying Networks

Marcin Bosk¹, Paulo Mendes², and Jörg Ott¹

Motivation (1)	Enhanced ROSA Service Address Router (SAR)	4
Low-Earth Orbit (LEO) constellations promise low la- tency communication with global coverage	Extract relevant Select adequate Check against last selected Add Incoming	
Variable I EO network topology is challenging for provi-	Information from Measage Header NHIB ID NHIB ID NHIB ID and NHIB	

sion of internet services with strict QoS requirements:

Service Placement and Discovery A Service Execution A

SCALE – A service-centric ROSA-based loadbalancing mechanism for time-varying networks, aiming to enhance user experience

- Service Edges at the borders of the LEO network
- In-path service name resolution integrated with a load-balancing mechanism
- Consider both service instance load and network path conditions

2

3

What is **ROSA**?

ROSA = Routing on Service Addresses [1]

- Novel service-centric networking framework
- Services instead of communication hosts determine the addressing semantics

Figure 2 Enhanced ROSA SAR packet handling

- ROSA does not support load balancing decisions according to SI load and network path conditions by default
- \mathbf{A} Extend decisions with forwarding choice utility (5)
- ♥ Utility information saved in extended FIB and NHIB tables (6)

Forwarding Choice Utility 5		FIB a	nd NF	IIB Tal	bles	5		6
$U = \alpha \cdot U_P + (100 - \alpha) \cdot U_L$ Defined as a combination of: SI load – $U_L \leftrightarrow U_P$ – Cost of reaching the SI \$		Table 1 Example FIB table with two entries correlating service names with potential next hops and their associated utilityServiceNext HopKnownPath Utility MapLoad Utility MapNameNHIB IDsSI TokensUPUPUL						ng service d utility Utility Map U _L
Client influence via α attached to Service Requests		EG1.COM	1,2	abdefgh, ijklmnop	1 2	30 25	1 2	90 50
Utility components saved in the FIB and NHIB tables		EG2.COM	3	qrstuvwx	3	30	3	110

 $\mathbf{8}$

System Requirements

Need to efficiently distribute the load across globally distributed Service Instances (SIs) **U**

Need to support a time-varying network

Therefore, the load-balancing mechanism must:

R1 Adapt to rapid load and availability changes

Updates using the Service Response and Service Announcement packets

Figure 3 Simplified diagram of a Service Edge

Initial Deployment

- Service Edge implemented in Go
- Client- and Server-side gateways enabling use of generic TCP applications

Table 2 Example NHIB table with two entries correlating entry
 IDs with IP addresses of associated next hop

ID	Target IPv6 Address (corresponding device)	Next Hop Network Cost	Is SAR	
1	fc00::1 (e.g. SAB 1)	20	true	
2	fc00::2 (e.g. SI 1)	15	false	
3	fc00::3 (e.g. SI 2)	10	false	

Initial Validation

 $\mathbf{9}$

Figure 5 Requests served by each SI in the *S* experiment

- **R2** Resolve semantic service names (e.g., domain names) to IP addresses in-band
- **R3** Minimize exchanged messages
- **R4** Handle inconsistent load-balancing information
- **R5** Minimize routing loops
- **R6** Give service providers some control over policy and load-balancing decisions
- **R7** Allow client to influence load-balancing decisions

Figure 4 Network showcasing the trial system deployment

Serving Instance ID

Figure 6 Requests served by each SI in the *M* experiments

- Solution Decentralized forwarding and balancing decisions
- Solution Agile reactions to system changes
- Sector Se
- Consideration of client needs
- Solution Control for service provider and network operator

¹School of Computation, Information and Technology, Technical University of Munich ²Central Research and Technology, Airbus

[1] D. Trossen, L. M. Contreras, J. Finkhäuser, and P. Mendes. Architecture for Routing on Service Addresses. Internet-Draft draft-trossen-rtgwg-rosa-arch-01, July 2023.