
Networking APIs
Breakout at

Munich Internet Research Retreat Raitenhaslach (MIR^3) 2017

(Lars Eggert, Michio Honda, Jörg Ott, Hagen Paul Pfeifer, Marius Strobl, Florian Westphal, Lars Wischhof)

Assumption 1: Standard Internet Architecture

In the discussion, the currently deployed Internet architecture is
assumed.

i.e. new networking paradigms – that would require completely new
functionalities of the Networking-API - are out-of-scope, e.g.:

• Information Centric / Content Based Networking

• Delay-Tolerant Networking

• Vehicular Networking

• …

Assumption 2: IoT Requirements out-of-scope

Specific requirements of IoT are not considered in the discussion since

• The IoT device very specific requirements, i.e. regarding energy-
efficiency, so that the Socket API is not applicable/is not being used,
or

• Energy-consumption of current Socket API is not a problem because
sending consumes much more energy than inefficient
implementation of Socket API
(e.g. copying data from userland to kernelspace)

Problems of the current API (1/3)

The 1970s/1980s Socket API does not scale anymore!

• Large number of connections, e.g. thousands of TCP connections
 large number of file-descriptors, inefficient

• Semantic: once you read, memory is yours

Work-arounds in order to cope with this inefficiency, e.g.:

• sendfile (directly copying from file desc. to socket desc. without copying
data to user-space)

• sendmessage with zero-copying / zero-copy sockets (page re-mapping
between kernel/user-space)

Problems of the current API (2/3)

Importance of hardware-offloading has increased:

• What functions should be performed in hardware?
• Checksum calculation, etc.

• Complete networking stack?
(feasible but many disadvantages: bugfixes, improvements, …)

• Interface to the hardware?

Problems of the current API (3/3)

Current API is fine for most standard cases but becomes a bottleneck
for high performance applications:

• Copying data, no packet-oriented processing of data in application
(application sends stream of data, transport layer needs segments)

Again, workarounds possible, e.g.

• Fast packet processing in userland

• StackMap + netmap framework (dedicated NIC for one application,
etc.)

Desireable Properties

• Isolation of network-stack and application
(main danger is not breaking the system but access to data that the
application is not allowed to access)

• Energy efficiency (mobile)

• And of course: high efficiency/performance ( data center)

Solution Ideas

• Dedicated I/O CPUs

• Packetized processing of data in the application

• Integration of GPU and networking (offloading on GPU)

• Reduce overhead in kernel, e.g. avoid queuing of TCP ACK packets
(but: requires changes in driver!)

• Reduce overhead of system call

??? New API or “just” solving performance issues of existing API ???

