
sys-sage: A Unified Representation of Dynamic Topologies &
Attributes on HPC Systems

Stepan Vanecek
Chair of Computer Architecture and Parallel Systems

Garching, Germany
stepan.vanecek@tum.de

Martin Schulz
Chair of Computer Architecture and Parallel Systems

Garching, Germany
schulzm@in.tum.de

ABSTRACT
HPC systems are getting ever more powerful, but this comes at the
price of increasing system complexity: node architectures are deeply
hierarchical and in many cases heterogeneous, and components
can interact with each other in unpredictable ways. Further, current
and future systems exhibit increasingly dynamic behavior, making
static knowledge of their configuration alone insufficient. To use
such systems efficiently, users as well as runtime systems have
to be aware of the exact hardware structure at any time, i.e., the
systems topology, its configuration parameters, and any side-effect
a component can have on the rest of the system, and how this
changes over time.

Current approaches to providing such information usually focus
on a single aspect and do not consider dynamic behavior. For ex-
ample, the widely used hwloc library, the current de-facto standard
solution for retrieving hardware topology information, provides
a static hierarchical view of all node hardware, but neither covers
other system configuration aspects nor dynamic behavior; other
systems have similar limitations.

In this paper, we propose sys-sage, a novel approach that over-
comes these limitations and goes beyond the functionality of ex-
isting tools, including hwloc. It offers the ability to track dynamic
changes, while unifying access to all system topology and configu-
ration data. With that, it provides, at any point in time, a complete
and updated view of the HPC system on which an application or
runtime system is executing. The novelty of our approach lies in the
ability to combine static hardware topology information with other
relevant system data in a single API, while enabling a dynamic
view and exposing system updates and reconfigurations on the fly.
We show the design of sys-sage and demonstrate its applicability
based on three separate use-cases, as well as by presenting further
scenarios not easily solvable with currently available tools.

CCS CONCEPTS
•Computer systems organization→Architectures; •Comput-
ingmethodologies→Modeling and simulation; Parallel computing
methodologies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’24, June 4–7, 2024, Kyoto, Japan
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0610-3/24/06. . . $15.00
https://doi.org/10.1145/3650200.3656627

KEYWORDS
HPC System Topology, Hardware Architecture, Heterogeneous
Computing, Performance Optimizations.

ACM Reference Format:
Stepan Vanecek andMartin Schulz. 2024. sys-sage: A Unified Representation
of Dynamic Topologies & Attributes on HPC Systems. In Proceedings of the
38th ACM International Conference on Supercomputing (ICS ’24), June 4–7,
2024, Kyoto, Japan. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3650200.3656627

1 MOTIVATION
High-Performance Computing (HPC) architectures have evolved
into complex systems built of diverse and heterogeneous multi-
core, vector, and GPU processing units. This design trend has led to
increased architectural complexity of both chip and node designs
as well as complex dynamic behavior when executing code. Fully
utilizing such architectures has become a challenge and requires
a deep understanding of the system’s architecture, from its hard-
ware structure to its dynamic behavior. Users and runtime systems
alike have to be able to query this information – both static and
dynamic – to adjust their execution behavior and to optimize for
the underlying platform. Currently, however, there is only limited
access to such information. Further, the access is split across many
independent libraries and often restricted to static configuration
data.

One of the most commonly used tools in this context is the hwloc
library [6], the current de-facto standard for retrieving the hierar-
chical hardware topology of a node. Hwloc builds a tree data struc-
ture, representing the static hardware architecture of a node with
its building blocks, such as cores, caches, or NUMA (Non-Unified
Memory Access) regions. Hwloc’s primary goal is to provide this
representation in an easy-to-use way to reveal which cores share
which resources, e.g., to support decisions on which applications
benefit from being scheduled together or which yield better perfor-
mance when running on more isolated instances. Such scheduling
decisions are then made by high-performance runtime systems,
like the ones shipped alongside OpenMP or MPI implementations.
However, the approach is designed for static data only and limited
to (CPU) topology information.

However, the growth in complexity is continuing and is far
from reaching its peak, making a static and strictly hierarchical
view on topology data alone insufficient. For example, optimizing
the use of on-chip networks requires more complex information,
such as node distance, not expressable in a static tree. Another
example is that modern architectures offer features for sharing and
isolating available resources, like multiple power domains, SMT
capabilities, or dynamic cache and bandwidth partitioning [21],

https://doi.org/10.1145/3650200.3656627
https://doi.org/10.1145/3650200.3656627
https://doi.org/10.1145/3650200.3656627

ICS ’24, June 4–7, 2024, Kyoto, Japan Vanecek et al.

which are runtime configurable and hence can lead to dynamic
configuration changes in resource availability. Further, emerging
memory technologies, such as HBM or disaggregated memory,
form heterogeneous memory hierarchies with their own topologies,
replacing simple DRAM blocks. On top of these complexities, many
state-of-the-art systems feature heterogeneous, accelerated node
architectures (nine of the top ten machines in the recent Top500
list [2]) — with GPUs being the most common, but by far not the
only type of accelerator. The high complexity is even amplified with
components, such as smart NICs, which have their own independent
complex internal architecture, making networking more complex
as well.

Overall, not only has the complexity, variety, and amount of
components in an HPC system increased (and is predicted to further
increase drastically), but also their usage is becoming increasingly
dynamic, with architectural features being software-controllable
and hence adjustable as needed for a specific workload.

As a consequence, there is a need for a new solution that goes
beyond the functionality of existing tools. This solution must be
able to combine, under one unified roof, the strengths of the ex-
isting tools, providing selected yet highly valuable information
for subparts of the overall problem space and extend it with sup-
port for new hardware resource types and structures as well as
architectural features. Further, such a solution must also be able
to incorporate dynamic information — be it changing hardware
resources, software configurations, or system status data indicating
current resource usage and/or sharing — as well as mechanisms
to influence dynamic settings. The resulting knowledge base and
configuration mechanisms must then be made available to users
and runtime systems to be used for optimization using a unified
API concept.

In this paper, we present sys-sage, a novel approach that ad-
dresses the needs stated above and is publicly available as an open-
source library implementation on GitHub1. It enables — in a
unified fashion — acquiring, storing, updating, and querying all
relevant information about the hardware and software configura-
tion of a node/system, including its (possibly dynamic) hardware
topology, its dynamic state and current configuration, its capabili-
ties, and other information related to the system and/or software
setup, all of which are logically connected to each other. It builds
upon and generalizes the concepts of hwloc to address its limita-
tions for modern systems and workloads.2 sys-sage integrates data
from existing data sources, such as hwloc, provides other (possi-
bly dynamic) frequently needed information, and enables logical
connection of different topology-related pieces of information in
its internal representation. We demonstrate the universality and
usability of sys-sage by presenting three use-cases from different
areas — CPU resource sharing, performance analysis tools, and
GPU performance estimation — where sys-sage is employed.

1https://github.com/caps-tum/sys-sage
2We present the concepts of sys-sage as a standalone approach for the purpose of this
paper and implement it as a separate library, but it could be integrated into approaches,
like hwloc.

2 DATA DISCOVERY APPROACHES AND
SYS-SAGE

Nowadays, there are countless tools, APIs, interfaces, and general
instruments that provide some partial information about an HPC
system, its components (such as nodes or CPUs), and its behavior.
Some of them (such as hwloc or nvidia-smi) provide mainly static
data describing the system.3 Others (such as DCDB [25], PAPI [24],
or LDMS [5]) provide dynamic information and metrics describing
the behavior of a system or applications running on it, but then
rely on other sources to map the data to static context information.
A third type of information can be exposed via quantitative mea-
surements, e.g., using targeted benchmarks exploring individual
components’ attributes, such as cache sizes. It can also help guide
optimizations and should be included in a generic approach, yet it
is not included in existing tools and must be added manually during
the subsequent data analysis process.

All existing approaches focus on certain, specific areas, and ex-
tending them with additional information can be very cumbersome
or impractical due to their often specialized API designs. On top of
that, there are dynamic system characteristics, which also need to
be considered, even if data is considered static. Examples of this are
hardware resources that can be subject to change through software
reconfiguration in modern systems (e.g., cache sizes, bandwidth
limits, or power caps) or that exhibit a smaller effective size when
shared with other workloads.

Depending on the kind of data, it needs to be collected pre-run
(it does not change), during the startup (does not change during
runtime), or continuously at runtime, and then all data sources need
to be combined in a single data representation. Only then can we
gain a full understanding of a system’s state and its components.
For this we need information from all these sources and life-cycle
stages, we need to understand how they relate to each other, and
users need to be able to access them in a unified manner to keep it
manageable and provide consistency. To complicate things further,
each application/runtime system/daemon/tool relying on this data
is unique and needs a different subset of the above-mentioned
information. Therefore, any approach needs to be flexible regarding
what information is included and how to extend it, to allow easy
customization based on the targeted use case and the addition of
new/different data sources.

sys-sage is designed to fulfill these requirements and unifies dif-
ferent data sources and their respective native APIs into a single
tool. With that, it supports a wide range of different use cases with
diverse usage characteristics. sys-sage covers the acquisition, pro-
cessing, and querying of hardware- and system-relevant data from
an extensible set of arbitrary sources throughout the entire applica-
tion lifetime, as presented in Figure 1. This is accomplished at its
core using a novel approach in the form of a dynamic graph-based
data store able to represent arbitrary data alongside the needed
relationships between data points.

As a result, sys-sage is the first to enable:
(1) Building and manipulating custom topologies,
(2) Fully reflecting the dynamic properties of a system,

3While these tools may also provide some dynamic information, their focus and design
is geared towards static data, and dynamic data is typically limited and provided via
rudimentary add-ons developed later, and therefore limited in scope and usability.

https://github.com/caps-tum/sys-sage

sys-sage: A Unified Representation of Dynamic Topologies & Attributes on HPC Systems ICS ’24, June 4–7, 2024, Kyoto, Japan

provide startup data

s y s t e m
throughput
benchmark

GPU
benchmark

power
efficiency

export
sys-sage

a p p l i c a t i o n

.xml

network
topology

node
architecture

resource
sharing

power
capping

one-off
measurements

static
configuration

(repeatedly) poll
dynamic data

pre-run system discovery application startup application runtime

application HW-related data

provide dynamic
runtime information

.xml

.csv .csv

store application data

Figure 1: Workflow of integrating different data to sys-sage.

(3) Representing more complex information regarding relations
of the system’s components, and

(4) Representing heterogeneous systems, also covering GPUs
and other non-CPU architectures.

2.1 Use-Case Descriptions
For the design of sys-sage, we consider a wide variety of use-cases
across different disciplines and areas of HPC. They range from
scheduling (from node- to core-granularity) through resource shar-
ing, heterogeneous and deep memory systems, and energy effi-
ciency to modeling and simulation tasks. To address all these prob-
lems, we require information that is very complex or impossible
to retrieve using the available tools, such as hwloc, and we then
provide it through a unified interface offered by the tool-facing side
of sys-sage.

The first example is job scheduling based on energy efficiency
and network topology. Prior work has been done on both topics
(such as [9, 31] for network topology and [3, 7] for energy efficiency).
However, each topic has been considered individually, which results
in conflicting scheduling strategies. Therefore, only one option
could be used. Integrating sys-sage will allow representation and
correlation of the network topology and node-/socket-/core-based
energy efficiency information. By balancing these two aspects, job
schedulers can make better scheduling decisions. The job would run
primarily on the efficient nodes (higher FLOPs under a given power
cap) while increasing the network overhead as little as possible. As
a next step, each application could weigh the parameters differently
based on its cross-node communication intensity.

In the second example, we consider on-node scheduling. State-of-
the-art chips have highly complex internal designs, such as mesh
topologies, going far beyond the strict hierarchy. Consequently,
some cores are faster when accessing a particular memory type or a
GPU. Hence, we see different performance based on core allocation
in some scenarios4. Dynamic power-capping introduces another
level of complexity. An application utilizing some threads to do
compute-intensive tasks, and others to write frequently to memory,
needs to find optimal hardware mapping. The compute-intensive

4The relevance of these differences has been shown in scenarios, such as the one by
Ramos et al. [10, 28].

threads should be on cores with the highest power cap (increasing
FLOPs), the data-intensive ones on cores with the highest mem-
ory bandwidth. To achieve that, we need to represent the system
topology (hwloc), the core-to-memory data transfer capabilities
(bandwidth benchmarks), and the current (core-specific) power caps
(variorum); and to correlate this information (in sys-sage), coming
from three different sources/APIs.

The following scenario considers resource sharing. On a system
with GPUs shared between two (or more) jobs, we need to decide
how to split the node. Each NUMA region has a different latency
when moving data between the CPU and the GPU. If NVIDIA GPUs
are split using Multi-instance GPU (MIG) [1], we need to find a
GPU with a sufficient amount of GPU Instances (GIs) for our GPU
kernel5. The solution is to find a GPU with sufficient GIs and assign
the CPU-side workload to cores with the lowest CPU-GPU latency
– to benefit both from sufficient GPU compute power and low data
transfer latency. Therefore, we need to combine (again in sys-sage)
the information from hwloc (NUMA-core mapping), benchmark
results (NUMA-GPU latency), and NVML (current GI availability)
into one whole to find an optimal allocation solution and achieve
optimal performance.

Finally, in many scenarios, users simulate or model behavior
of an application on a different system. To define the arbitrary
topologies or system attributes of the modeled system, they need
to have a system representation that is versatile and can combine
static and dynamic system topology information and properties. In
this scenario, sys-sage can be the backend to choose to represent
the modeled system topology with all the attributes relevant for
the computation.

2.2 Functionality Scope
In the context of this paper, a ‘user’ of sys-sage is any resource
manager, daemon, user-side application, etc., storing data to or
retrieving data stored in the library. Each user of sys-sage has widely
different requirements on what the library should provide, i.e., what
hardware- or system-relevant information is needed and what is
redundant. We gain the flexibility for such a broad coverage by

5For example, to avoid register spilling or to have sufficient memory/L2 cache size.

ICS ’24, June 4–7, 2024, Kyoto, Japan Vanecek et al.

Reflecting
dynamic
aspects

I n t e g r a t i o n

Application

system
topology

power
settings

variorumhwloc

bandwidth,
latency

benchmarks

dynamic
system changes
resource sharing

configuration

(a) Traditionally, an application has to take care of all
the integration, storage and connection of the information.

Application

sys-sage

single interface

system
topology

power
settings

variorumhwloc

bandwidth,
latency

benchmarks

dynamic
system changes
resource sharing

configuration

(b) sys-sage serves as a backend for HW-related data and offers
a single interface for the application.

Figure 2: Integrating HW-related data with and without sys-sage.

logically decoupling the core tasks. We split the workflow into
three stages:

(1) Collecting the relevant information (from any source) and
mapping it to a common representation,

(2) Maintaining the information – different kinds of information
(static/dynamic, qualitative/quantitative, variable/constant,
...), collected from multiple data sources, regarding different
components of the system – so that all data forms one logical
structure, and

(3) Providing the data to the user in a unified fashion.

As mentioned above, many sources of HW- and system-relevant
data are being used today — provided by applications, the OS or
drivers, or by specially tailored benchmarks, to name a few typical
examples. sys-sage does not aim to replace these methods; it rather
uses the information they provide as one of its many data sources,
and simplifies and unifies the way the data from different sources
is combined, correlated, and offered to the user. Hence, mainly (2)
maintaining and (3) providing the information are in the
focus of sys-sage, while its design allows (1) importing any rele-
vant information from any existing source by supporting flexible
mapping mechanisms into the sys-sage data representation.

2.3 Integration with sys-sage
Traditionally, an application needing hardware- or system-related
information specifically has to integrate a separate tool/API for
each data source or targeted component. Moreover, it also has to
provide the integration and correlation of these data sources with
each other in order to make sense of the combination of the needed
data. This is illustrated in Fig. 2a. For instance, hwloc tells us which
CPU cores map to which NUMA region. Another tool provides
us with a power efficiency ranking of each core. Neither of the
pieces of information alone can tell us which cores to select when
scheduling one core per NUMA region; only when combined and
correlated, we gain the needed insight.

sys-sage simplifies this task, as shown in Fig. 2b. Its design con-
nects the partial information (or information regarding different
system components) to present a complete view of the system. It
provides a unified data and storage model that is used to store the

independently obtained static and dynamic system information.
The user can then retrieve all the information from this unified
data model via a single interface. Once implemented, a procedure
for integrating data sources into sys-sage can be reused by multiple
applications — each possibly using a different subset of these data
sources. Finally, dynamic information about system state and sys-
tem changes needs to be stored somewhere, too — sys-sage handles
this task as well. The design of sys-sage enables the applications
to benefit from more precise information about a system, while
drastically simplifying the implementation and integration process.

While certain types of information are needed and expected in
many use cases, such as the number of CPU cores, other information
may be completely use-case-specific, such as profiling output (cf.
Sec. 5.2). To get the best out of both worlds, sys-sage offers the
frequently-needed information out-of-the-box, while enabling the
users to add more specific data via a simple API.

The novelty of our approach lies in identifying the need for
providing correlated hardware information frommultiple sources in
a unified way. The implementation of sys-sage enables reusing and
combining data regarding various (static and especially dynamic)
aspects of different components, appearing in different stages of the
application life-cycle, using a single interface. Our library builds a
logical relation between the available information, simplifying the
navigation through the quantity of the data while extracting the
needed information.

3 DESIGN OF SYS-SAGE
The design of our library sys-sage reflects the requirements pre-
sented in the previous section, and, in particular, reflects the three-
stage approach that enables the decoupling of data acquisition,
storage, and delivery. Further, sys-sage is designed to be expand-
able, so future developments in HPC architectures will not make
our approach obsolete.

The integration of system information and interaction of an
application with sys-sage is presented in Fig. 3. It illustrates the two
options for data integration – for data already available before the
startup (purple) and for data available at runtime (green) – and how
the user interacts with the library (blue arrows). The functionality
encapsulated in sys-sage out-of-the-box is marked in full lines, and

sys-sage: A Unified Representation of Dynamic Topologies & Attributes on HPC Systems ICS ’24, June 4–7, 2024, Kyoto, Japan

Data Parsers
(plugin integration)

hwloc
data source

power-
variations
data source

user-specific
benchmark
data source

hwloc .xml

power-variations
benchmark

.csv

network-speed
user benchmark

.csv

s y s t e m

resource
sharing

In
te

l C
AT

 A
PI

Data Sources
(generating data)

power
capping

va
rio

ru
m

 A
PI

system
metrics
collection

us
er

 m
et

ric
co

lle
ct

io
n

AP
I

N
Vi

di
a

M
IG

 A
PI

Application

sys-sage API

sys-sage Library

sys-sage Internal
Representation

Modifying
dynamic

information

Retrieving
stored

information

upload
 data

dynamic
runtime

information

3rd Party API

core functionality

optional functionality

startup configuration

runtime polling

sys-sage core functionality

user extensions

Figure 3: Integration of system information to sys-sage.

the possible custom extensions are dashed. In general, the user of
our tool defines which sources get uploaded to the library, either
by choosing from provided (default-) or by adding custom data
sources. This forms the basis of the stored information. Once data
is loaded into sys-sage, the user, which can be an application, a
resource manager, a runtime system, or any other program, can
query the stored data from the library. In addition, through the API,
users can add or modify arbitrary attributes to reflect changes in
the system or new information as it becomes available.

3.1 Conceptual Elements of sys-sage
For a closer understanding, we define the following conceptual
elements:

Internal Representation is the central part of the library that
stores information regarding the components of the system as well
as their relations. It combines all data together into one logical
representation, enabling easy orientation in it. More detail on the
Internal Representation follows in Sec. 3.2.

Data Sources are files or other interfaces containing/providing
the raw information to upload into the library. There are two types
of data sources: 1) Default Data Sources and 2) Custom Data Sources.
The former is generated through functionality (applications, bench-
marks, scripts, ...) supported by the core of sys-sage. The goal is to
provide the frequently-used information out-of-the-box so that the
users do not need to implement anything themselves. Custom Data
Sources, on the other hand, are data generated by user (custom)
extensions offering measurements, observations, or findings. They
are not a part of the core of sys-sage, but can still be a part of the
workflow for uploading data to sys-sage.

Input Parsers are responsible for uploading the Data Sources
into sys-sage. They read the Data Sources and transform the data
into structures recognized by the library’s Internal Representation.
Analogously to Data Sources, there are Default and Custom Input
Parsers. Default Parsers are a part of the library and enable a simple
out-of-the-box parsing and uploading of Default Data Sources.

Custom Parsers are user extensions that parse their Custom Data
Sources. For instance, results of a user-defined benchmark can be in-
tegrated via a Custom Input Parser. They consist of a simple function
that reads the Custom Data Source and builds the Internal Repre-
sentation based on its contents. Once the Internal Representation
mapping is decided, the effort is typically minimal and focuses
primarily on parsing the input from its custom format.

API – sys-sage exposes an API through which the Internal Repre-
sentation is manipulated and queried. Moreover, the API is used to
query 3rd party tools and APIs to obtain live information regarding
the system and/or application behavior and state. The API is further
described in Section 4.

Being a user-side library, the user/application has full control
over the information contained in sys-sage. Therefore, sys-sage only
has access to information/APIs/data that the user can access. It
operates within the process that utilizes it, and no data leaves the
process unless the user purposely exposes it, to ensure security
of the stored data. Finally, the user-side library format provides
proper separation of concern, where each user (process) has its own
sys-sage instance with its own set of information, even if running
on the same machine, relying on the proven security mechanisms
in the operating system.

3.2 Internal Representation
We represent an HPC system in sys-sage in the form of Compo-
nents, their hierarchical physical structure (that we call Compo-
nent Tree), andData Paths, which reflect additional attributes and
relations between Components that go beyond the tree structure.
Data Paths form a Data-path Graph, which captures information
orthogonal to the Component Tree, as the latter mainly represents
the static physical composition of the system. Both the Component
Tree and theData-path Graph (presented in Fig. 4) can bemodified at
runtime, allowing sys-sage to capture the changing characteristics
of a dynamic system.

For instance, Components can describe different caches (the ca-
pacity of each cache, its associativity, hit rate from HW counters)
or the number of registers and current frequency of a CPU core.
Data Paths bring information on relations between two Compo-
nents, such as cache-to-core latency for different cache levels, or the
percentage of cross-NUMA accesses for different NUMA regions.

Components and Component Tree. An HPC system is com-
posed of multiple (physical or logical) elements that we call Compo-
nents. Components have hierarchical relations to each other, which
we capture in the Component Tree. It provides a structure that is
easy to understand for the user, and is easy to navigate, as presented
in Fig. 4a. It thereby forms the core of sys-sage, and all additional
information (static and dynamic) is connected to and referenced
from it. The concept is inspired by the way hwloc represents CPU

ICS ’24, June 4–7, 2024, Kyoto, Japan Vanecek et al.

Node

CPU Socket

NUMA

Core

GPU

Memory

SMCache

Cache

(a) Component Tree showing different Component Types
in different colors.

Cache
partitioning

BW &
latency

Data
transfer
energy

(b) Data-path Graph with Data Paths carrying different information
in different colors.

Figure 4: Example Component Tree and Data-path Graph over the same set of Components.

data, but sys-sage offers more freedom covering more diverse com-
ponents capturing all on-node resources (hardware and system
related), i.e., not limited to CPU resources.

There are multiple Component Types that are derived from
different parts of computer systems so that their specific attributes
and functionalities can be represented. Component Types are imple-
mented in a class hierarchy and should be thought of in that way.
All Components inherit basic attributes and API calls from the Type
‘Component‘, which is a default generic type. Each Component,
therefore, contains information such as

• its position in the Component Tree with links to the parent
and child Components for easy navigation in the tree,

• basic attributes such as ‘id’ or ‘name’, and
• a wildcard map ‘attrib’, which allows the user to add arbi-
trary pieces of information or data. It is a key-value store,
where the key denotes the name of the attribute, and the
value points to the data.

Each Component is of one of the following Component Types:6

• Component: generic type with no special attributes.
• Topology: the root of an HPC system.
• Node: HPC system nodes.
• Storage: a data storage device7.
• Memory: main memory or a part of it (any technology).
• Chip: a building block of a node. It may represent a CPU
socket, a GPU, a NIC or any other chip.

• Subdivision: a generic grouping within the system.
• NUMA regions: a special and frequently-occurring case of
Subdivision grouping memory locations.

• Cache: different levels or kinds of caches.
• Core: a processing core or a block of compute units.
• Thread: a hardware thread, i.e., what a Linux OS considers
a ‘CPU’ or a compute unit on other types of chips.

Each of these Component Types introduces a specific set of at-
tributes or functionalities. This may be the cache level, size, and
associativity for type Cache or frequency for type Core.

Data Paths and Data-path Graph. A Data Path is a construct
that carries (often dynamic) information about the relation of two
arbitrary Components. The union of all Data Paths forms a Data-
path Graph (an example shown in Fig. 4b). Each Data Path has a
6Different Component Types have no predefined hierarchy.
7Note, that for technologies such as NVRAM, the system administrator decides whether
to model it as a memory or storage component (or both).

source and a target Component. Apart from that, there are no other
limitations. Data Paths may be oriented (differentiating between
the source and the target) or bidirectional. Multiple Data Paths may
connect the same pair of Components, enabling the representation
of multiple dependencies or relationships. To differentiate between
them, attribute ‘dp_type’ is used to easily tell apart different kinds
of information carried by Data Paths.

Analogously toComponents,Data Paths have a set of default prop-
erties, such as bandwidth or latency, and a wildcard map ‘attrib’
for all other data.

Data Paths carry all different kinds of information, including but
not limited to data-transfer-, performance- or power-consumption-
related, or even application-specific data, as shown in the use-cases
in Sec. 5. Altogether, Data Paths can be used to model any property
regarding the connection or relation of two arbitrary Components.

Data Paths are associated with the Components they refer to.
Each Component contains a reference to all Data Paths associated
with it; and each Data Path includes references to source and target
Components.

Overall, Data Paths provide a very generic mechanism to express
potentially dynamic relationships between components. This is in
contrast to existing, less flexible approaches, such as the one by
hwloc. Here, distance information, which we would represent as a
possible relationship, is covered by separate ’distance matrices’ —
a concept that is not easy to work with from the user-perspective
and is not flexible in its usage, as it is a limited, single purpose
specification of only latency/bandwidth information.

4 SYS-SAGE API AND IMPLEMENTATION
sys-sage is implemented as a C++ library, which can be easily inte-
grated into other (mainly C++-based) projects. sys-sage offers a rich
API based on C++ object-oriented principles. The API is designed
to be easy to use and easy to understand.

Components and Data Paths alike are instances of different C++
classes, forming the basis of the Internal Representation. To create,
access, and manipulate them, sys-sage exposes an API in the form
of public methods.

The Components are linked to each other through the Component
Tree. Data Paths are linked to the source and target Components (as
well asComponents are linked to theirDataPaths). Therefore, having
a handle (pointer) to an arbitrary Component (or Data Path) suffices
to traverse to any Component (or Data Path) and access/update its
information.

sys-sage: A Unified Representation of Dynamic Topologies & Attributes on HPC Systems ICS ’24, June 4–7, 2024, Kyoto, Japan

Apart from focusing on the Internal Representation, other parts
of the API handle the Data Parsers and retrieval of dynamic vari-
able information through integrated 3rd party APIs at run time (cf.
Fig. 1).

4.1 API Categorization
We divide the API into categories based on the functionality they
provide. The complete API description is available in sys-sage’s
documentation via the GitHub repository.

4.1.1 Components. The Components’ API is realized via public
methods of the Components, i.e., the users call functionalities from
a particular Component’s perspective. The majority of the API is
available to all Component Types. Exceptions are Component Type-
specific getters, setters, and constructors.

Creating/Deleting Components. The creation of individual
new Components (and their placement in the Component Tree)
is managed by the respective class constructors (examples being
Cache(...), Node(...)). Each Component Type (being a separate
class) has a set of its own constructors. Deletion of Components is
done through void Delete(...) or void DeleteSubtree() methods,
deleting either the Component itself or the entire subtree.

Navigating in the Component Tree. Users can browse through
the Component Tree, using sys-sage API to find the Component/Data
Path of interest (to read or update its attributes). They traverse
to a single child/ancestor filtering by different parameters (such
as Component* GetParent(), Component* GetAncestorByType(int),
Component* GetChild(int)), or retrieve a list of Components match-
ing selected criteria (vector<Component*>* GetChildren(),

vector<Component*> GetAllChildrenByType(int), or
vector<Component*> GetAllSubcomponentsByType(int)).

Modifying the Component Tree. The user can insert and re-
move Components to dynamically modify the structure of the Com-
ponent Tree. For this purpose, we can insert a Component as a new
leaf element8 (e.g., void InsertChild(Component*)) or between a
parent and (one or more) children Components (e.g., int

InsertBetweenParentAndChildren(...)). Inversely, one can also re-
move a Component’s child (int RemoveChild(Component*))9

Aggregating the Component Tree. Aggregation operations
over the Component Tree provide basic tree structure characteristics.
int CountAllSubcomponents() or int GetSubtreeDepth() are some
examples.

Attribute Getters/Setters. Components’ attributes are retrieved
through getters and updated through setters (or constructors). Some
are common for all Components (such as int GetComponentType()

and int GetId()), and others are Component Type-specific (such as
void SetCacheLineSize(int) or void SetSize(long long)).

attrib store. To ease the access to the additional data stored in
the Components, map<string, void*> attrib is a public member.

8Constructors can also attach the new Component as a leaf.
9Removing only as parent’s child, the Component does not cease to exist.

Accessing the Data Paths. sys-sage offers methods, such as
DataPath* GetDpByType(...) and void GetAllDpByType(...)10, to
access the Data Paths related to a Component.

Helper and Output Functionality. Finally, supporting func-
tionality for development/debug purposes is present. The users
can, for example, print basic information about the Components
in the subtree to stdout (void PrintSubtree()). They can also use
the int CheckComponentTreeConsistency() method to check if all
Components in the Component Tree are interlinked properly.

4.1.2 Data Paths. The APIs for Data Paths offer very similar
functionality to Components, but in a limited scale, as not all opera-
tions are relevant. There are methods for Creating/Deleting the
DataPaths (DataPath(...), void DeleteDataPath()). Next, Access-
ing the associated Components is possible through Component*

GetSource() or Component* GetTarget(). There are also Getters
and Setters for Data Paths’ attributes (such as int GetDpType(),
void SetLatency(double)), and the attrib store. Finally, a void

Print() Helper Function is available as well.
All in all, the exposed functionality for Data Paths follows the

same logic as one for Components. It does not offer as many func-
tionalities, as Data Paths do not have to manage the Component Tree
complexities, neither do they support multiple Data Path types.

4.1.3 Data Parsers. The Data Parsers upload Data Sources into
sys-sage’s Internal Representation, using primarily the Component
and Data Path APIs in the background to do so. As such, they offer
uploading a larger amount of information in one command. As they
are not explicitly related to a particular Component or Data Path,
they are available as standalone functions. The user only defines
which part of the Component Tree to add the information to (such
as which node or socket).

For instance, there are Data Parsers for hwloc CPU topology
output int parseHwlocOutput(Node* n, string fileName) and for
mt4g11int parseMt4gTopo(...) (cf. Sec. 5.3). As more and more
Data Sources become available, this part of the API will grow in
size.

4.1.4 Dynamic 3rd Party API. Finally, there is an API for man-
aging dynamic information retrieved at the run time. The dynamic
information extends the API for Components or Data Paths by in-
troducing new calls. For example, int UpdateL3Partitioning() up-
dates the current L3 cache partitioning settings of a Node Compo-
nent. int RefreshFreq(...) retrieves the frequency of a particular
CPU core (as a core’s method) or each CPU core in a node (as a
node’s method). The dynamic 3rd Party API may also grow as we
introduce support, for instance, for power- or GPU-related metrics,
introducing additional options for the users.

4.2 Performance of Basic Operations
We evaluate the overhead of sys-sage in Table 1. It presents the
times needed to upload and parse chosen Data Sources into the
library, including the creation of the Internal Representation. The
parsing times are typically in the microsecond range per Compo-
nent/Data Path, including overheads of reading the source files.

10The result is returned as a parameter to minimize data movements.
11Providing GPU topology. Available under https://github.com/caps-tum/mt4g

https://github.com/caps-tum/mt4g

ICS ’24, June 4–7, 2024, Kyoto, Japan Vanecek et al.

Action Time Time per
element

Parse hwloc output 3.2ms 30 µs/Component
Parse GPU topology

information
15.6ms 2.0 µs/element∗

Get handle to all Components 379 µs 92 ns/Component
Find NUMA region with the

largest bandwidth
242 ns 60 ns/DataPath

searched
Get dynamic L3 size for the

current thread
2.6 µs

Create new Component 3.3 µs
∗ : Created 4023 Components and 3840 Data Paths.
Table 1: Overhead of selected static API calls in sys-sage.

Action Time % 3rd party
intereface

Update L3 cache partitioning 7.0ms 97.0 %
Update Frequency of all cores 1.01ms 78.1 %
Update MIG configuration∗ 22.8ms 95.8 %

∗ : Measured on a AMD Ryzen Threadripper 2990WX, 32 cores, 3.0 GHz, 64 MB L3,
running Linux 5.15.0 and NVidia A-100, driver v. 545.23.08.
Table 2: Overhead of integrated dynamic 3rd party interfaces
in sys-sage.

Next, Table 1 presents the overhead of selected API calls, which
range in microseconds or lower per piece of information obtained.
The results are, however, highly dependent on how the calls are
made, especially regarding caching effects. This and all subsequent
performance measurements were performed on a Dual Socket Intel
Xeon Silver 4116, 12 cores/socket, 2,10 GHz, 16,5 MB L3, running
Linux 5.15.10.

4.3 Performance of Dynamic 3rd Party
Operations

Table 2 presents selected 3rd party interfaces to query dynamic
varying information during the runtime. The performance highly
depends on the overhead of the underlying 3rd party APIs – these
calls (which sys-sage cannot influence) form over 95 % of the overall
time. The frequency read-out is an exception where sys-sage over-
head presents 22 % of the total time. This is because the frequency
is read directly from the /proc/cpuinfo file.12

In general, these results show that sys-sage would only introduce
a small percentage of overhead to process and store the information.
Even when parsing a file, the file read overhead is significantly
higher than sys-sage’s.

4.4 Memory Footprint
Regarding memory requirements, the amount of memory sys-sage
occupies is defined by the amount of information we are interested
in. Thememory footprint of a 24-core, 105-Component hwloc output
in the sys-sage Internal Representation is 22 kB, i.e., 209 B/Component.
12We measure the file parsing as a part of sys-sage overhead; only opening/reading
the file is measured as 3rd party interface contribution.

1 2 3 4 5 6 7 8
LLC

way #
1
2
3
4

core
core
core
core

COS 0
COS 1
COS 2

Figure 5: Intel CAT technology. Each core belongs to a COS,
which defines the LLC ways it can access.

Due to lowmemory requirements, sys-sage can benefit from caching
effects when used repeatedly.

The time and memory resource footprint results show that our
sys-sage implementation is both fast to use and occupies only a
small amount ofmemory that does not interferewith the application
running on the system.

5 EVALUATIONWITH USE-CASES
While the experiments in the last section show the low overhead
of the library, which is a key prerequisite for any support library
in HPC, the real value of sys-sage lies in its capability to ease the
handling of topology data and in support of a wide range of use
cases. The latter targets both the simplification and improvement
of existing use cases, enabling the migration of functionality out of
individual consumers into a shared code base, as well as its ability
to support new use cases, especially ones focusing on dynamic
system behavior. To illustrate this and demonstrate and evaluate
the capabilities of sys-sage, we describe three distinct use cases
from very different areas. None of the use cases can be solved using
currently available tools, such as hwloc, hence showing the need
for a new library such as sys-sage.

5.1 Cache-aware Algorithm on Dynamically
Changing Cache

Modern CPUs offer means to restrict access for specific processes
or cores to certain resources, such as L3 cache partitions, to more re-
liably support virtualization or co-scheduling techniques. Resource
sharing and isolation are essential topics in cloud environments,
but they are also becoming more prominent in HPC co-scheduling
efforts [30]. On Intel CPUs, which we use in the following experi-
ments, this feature is called ‘Cache Allocation Technology (CAT)’.13
When running multiple applications on one CPU, we can use CAT
to provide each application with an isolated portion of shared re-
sources, such as the L3 cache. CAT uses Classes of Service (COS)
for each CPU core to assign it an available fraction of the L3 cache.
For instance, in Fig. 5, Cores 1 and 2 can only use cache ways 1–3,
i.e., 3/8 of the total L3 size. CAT, therefore, turns the available cache
size from a static hardware property to a dynamic runtime setting.
Many applications, particularly those that repeatedly access their
dataset, as is for example the case for matrix operations or stencil
computations, are often tuned to a particular cache size. For exam-
ple, they split their domains based on the available cache sizes to
profit from their lower latency.

13Similarly, AMD (Platform QoS) and ARM offer means to partition caches; we plan to
add support through the same API in the future.

sys-sage: A Unified Representation of Dynamic Topologies & Attributes on HPC Systems ICS ’24, June 4–7, 2024, Kyoto, Japan

This use-case discusses a parallel OpenMP implementation of a
Jacobi stencil computation. Each core performs the computations
row-wise. The goal of a tiled implementation is to ensure that the
neighboring cells already accessed in the given time step are not
evicted from the L3 cache in the meantime. Therefore, the row-wise
computation is split into parts to fit n rows in the L3 cache; hence,
each value (cache line) is loaded only once. On the test system, this
tiled implementation results in a speedup of 1.47 over the naive
parallel implementation for larger stencils.

However, when CAT is activated, the L3 size information pro-
vided by hwloc or /sys/devices/system is no longer applicable,
and the speedup disappears. To solve this, we must provide the
true accessible L3 size available to a particular CPU core instead.
sys-sage enables this by tracking the dynamic CAT settings on the
system. The dynamic information is represented using Data Paths
between the core (source) and the L3 cache (target).14 Specifically,
each Data Path carries the bitmask of the opened L3 ways (COS) as
an entry in the ‘attrib’ key-value store. Combined with the static
‘size’ attribute of the L3 ‘Cache’ Component, the exploitable L3 size
can be calculated and provided to the user.

The implementation is sketched on Listing 1.15 First, a Compo-
nent of type ‘Node’ is created, and the hwloc output file is parsed
and uploaded to this node to capture the static hardware property.
Then, we obtain a handle to the currently running thread in the
Component Tree representation. Next, Data Paths for all hardware
threads with the current L3 CAT settings are updated. Finally, the
exploitable L3 size is obtained, including L3 CAT settings.16 These
six lines of code utilizing sys-sage spare us the burden of 1) parsing
the static topology information, 2) finding the related L3 cache
sizes for a given CPU core, 3) communicating with the CAT API
to obtain the bitmask for the current core, and 4) correlating all
the data together. As none of these tasks is in the focus of the
stencil computation code, it only makes sense to offload them to a
library, i.e., sys-sage, thus providing a separation of concern for the
application.

To evaluate the correctness and impact of this approach, we
enable different cache configurations using CAT and compare the
performance when running (1) the naive non-tiling algorithm, (2)
tiling using the static cache information provided by existing ap-
proaches, such as hwloc, and (3) tiling using the dynamic infor-
mation provided by sys-sage. For reproducibility of the results, the
CAT settings do not change throughout the measurement and are
obtained only once. We could check the CAT settings repeatedly to

14Note that also L2 CAT exists, which can be represented in sys-sage in the same way.
15Error handling (if return value == NULL) is omitted for simplicity.
16We know that all OMP threads share the same COS, hence we generalize the infor-
mation from OMP Thread 0. Otherwise, we would query the available L3 size for each
thread.

Node ∗ n = new Node (1) ;
parseHwlocOutput (n , " hwloc_output . xml ") ;
in t cpu_num = sched_ge t cpu () ;
Thread ∗ t = (Thread ∗) n−>FindSubcomponentById (cpu_num ,

SYS_SAGE_COMPONENT_THREAD) ;
n−>Upd a t e L 3 P a r t i t i o n i n g () ;
long long L3_sz = t −>GetDynamicL3Size () ;

Listing 1: Obtaining available L3 size for running core.

XXXXXXXXXXXX
Speedup

Available L3
Fraction full L3 8/11 L3 2/11 L3

Static L3 size vs. Naive 1.47 1.20 1.03
Dynamic L3 size vs. Naive 1.47 1.43 2.11
Dynamic L3 size vs.
Static L3 size

1.0 1.19 2.05

Table 3: Reducing the available L3 size renders static tiling
useless. Our cache-partitioning-aware approach maintains
the performance advantage of tiling.

react to potential dynamic changes during the program execution
simply by moving the last two lines from Listing 1 into the main
for-loop.

The results are presented in Table 3. We see that the performance
gain of tiling using the static L3 cache size vanishes as we limit the
effective L3 size, as the tile size is too large to fit into the cache par-
tition, similar to the naive implementation. When limiting the L3
size to 2/11 of the static hwloc-provided size, the performance gain
is eliminated (1.03x). On the other hand, the implementation query-
ing the correct dynamic L3 size via our approach, which reflects
the dynamic changes in the system, maintains or even improves
the observed speedup (up to 2.11x vs. naive implementation when
using 2/11 of the L3 cache).

Cache-aware algorithms are, in many cases, useful for reducing
data transfer bottlenecks. This use-case clearly shows that using
only the static information no longer suffices on modern systems
with dynamic properties. To provide accurate information based
on these dynamic properties, sys-sage can be integrated within a
few lines of code.

5.2 Capturing Memory Access Data in sys-sage
A second use case for sys-sage is maintaining and organizing data
collected for performance analysis and visualization. To demon-
strate this capability, we build upon Mitos [12], a data collection
tool that uses Intel’s PEBS functionality to provide raw traces of an
application’s memory movements with detailed hardware-related
information.

MemAxes [11] is a complementary tool that analyzes and visu-
alizes the collected data so that users can easily identify memory-
based bottlenecks of their applications. For the data analysis and
visualization, it is necessary to augment the measured data with
the system context in which they were measured and to connect
the acquired memory access samples with the hardware topology
information. Initially, the implementation of MemAxes internally
converted the hwloc output to a rigid structure. This implementa-
tion is no longer applicable to modern systems with complex and
varying hardware characteristics. We, therefore, replaced the rigid
internal topology representation with sys-sage. This way, we gain
a new flexible and future-proof approach to maintain the relation
of the two inputs – the acquired memory traces and the dynamic
system configuration.

For this transformation inMemAxes, the original hwloc topology
information is directly imported to a sys-sage Component Tree. We
then store this dynamic sample information in sys-sage’sData Paths.
We use the information from Mitos samples about the issuing core

ICS ’24, June 4–7, 2024, Kyoto, Japan Vanecek et al.

Figure 6: MemAxes Topology View visualization is based
on data from sys-sage’s Component Tree. Individual blocks
represent (from outside to inside): Hardware Threads, Cores,
L1 Caches, L2 Caches, L3 Caches, NUMA memories, Sockets
and the Node. Darker color indicates more samples collected.
Mouse hover presents detailed information.

(source) and the memory component serving the request 17(target),
connecting the samples with the underlying hardware structure.

Benefits of adopting sys-sage: This integration results in a
highly flexible system representation and sample storage, which is
visualized in MemAxes, as shown in Fig. 6. sys-sage takes over the
data management and its connection, which significantly simplifies
the implementation.

The original hwloc output parsing logic took over 200 lines of
code, which could be replaced with a single-line sys-sage API call.
Moreover, the original parsing logic was very naive, parsing the
output line-by-line. MemAxes would no longer work in the current
(2.9+) version of hwloc, as NUMA memory segments are no longer
parents of the underlying caches in the XML topology export. To
overcome this, the parsing logic would become much more complex
and would, as a result in the ideal case, end up mimicking the hwloc
parser already integrated in sys-sage.

More importantly, we can loosen the data backend coupling
through our sys-sage integration. This means that MemAxes can
now easily switch the HW topology backend to other tools, like,
e.g., MUSA [17] to visualize MUSA-generated traces18. Similarly,
MemAxes can also visualize AMD IBS samples (also provided byMi-
tos), which use different data layout, with minimal effort, allowing
us to unify the access to this data across both platforms.

The transfer to sys-sage enables representation of systems with
various cache hierarchies, multi-socket systems, or cross-NUMA
data accesses, none of which was previously possible without signif-
icant rewrites in the end-user tool, which is not maintainable in the

17L1/L2/L3 cache or which NUMA region
18As MUSA uses a custom topology definition format incompatible with hwloc’s, we
only have to add a custom Data Parser for MUSA.

Figure 7: Speed of repeatedly reading an array of a certain
size on different NVidia GPUs/microarchitectures. Vertical
lines denote the L2 cache size provided by sys-sage.

long run. The integration of sys-sage provides a proper separation
of concern and a generalization of the functionality.

5.3 Performance Estimation on GPUs with
Dynamically Changing Memory Topology

Similarly to CPUs, GPUs use a complex set of caches and GPU
kernels profit from their efficient usage. However, GPUs’ compute
and memory hardware architecture is hidden and hard to capture
and, therefore, is often not considered by the developers. Our third
use-case presents how sys-sage concepts can be used beyond CPU,
for performance estimation and optimization on GPUs, which is
crucial to achieving performance portability across different plat-
forms. In particular, knowing the size of the caches enables users
to allocate the right amount of resources or adjust the data set size
to achieve optimal performance on an arbitrary system.

Some tools and interfaces provide the L2 cache size, such as
ones of CUDA (cudaGetDeviceProperties) [26], hwloc [6], or LIK-
WID [19]. Information about other caches is, however, not available.
sys-sage provides means to represent the complete GPU hierarchy,
including different types of caches, SMs (Streaming Multiproces-
sors), warps, etc. It integrates the mt4gData Source19, which utilizes
native interfaces to query the cache sizes, where available, or mea-
sures the size using carefully designed microbenchmarks that stress
the memory and caching subsystem. Ultimately, sys-sage’s Data
Parser for mt4g combines the information from both sources and
offers it through a single API.

sys-sage stores and manages the information the same way as the
matching CPU information – by constructing a Component Tree and
respectiveData Paths. Therefore, even accessing the data follows the
same rules thanks to sys-sage’s unified interface, despite the widely
different structure of the underlying Data Sources’ information.
Currently, sys-sage supports all recent NVIDIA microarchitectures,
and preliminary results have been obtained for AMD GPUs.

5.3.1 Algorithmic Impact. Fig. 7 presents ameasure of performance
(ns/B) of repeated vector addition using vectors of different sizes,
illustrating the potential impact on performance. The vertical lines
represent L2 cache sizes for different GPUs provided by sys-sage.
The plot shows a visible decrease in performance once the vector

19As a Default Data Source, it is directly linked from sys-sage repository.

sys-sage: A Unified Representation of Dynamic Topologies & Attributes on HPC Systems ICS ’24, June 4–7, 2024, Kyoto, Japan

Figure 8: Speed of repeatedly reading an array of a certain size
on different NVIDIA A100 using MIG. Vertical lines denote
the L2 cache size provided by sys-sage.

size exceeds the L2 cache. Therefore, it is crucial to select a data
set that fits into this L2 size limit on a given machine, for which
knowledge of this information is required.

Currently, this can be done manually via separate interfaces
using different APIs. Further, hwloc, likwid, and NVIDIA native
APIs would report the L2 size of NVIDIA’s A-100 as 40MB. However,
by analyzing the hardware architecture (e.g., in Choquette et al. [8]),
one can observe two partitions on the GPU, each having 54 SMs
and a 20MB-block of L2. Since the used topology representation
in sys-sage does not rely solely on native interfaces, but verifies it
using microbenchmarking results, this feature could be recognized
and correctly modeled in the Internal Representation, offering users
correct information based on actual observed hardware properties.

5.3.2 Usage for DynamicMulti-instance GPUs. Most recent NVIDIA
GPUs (starting with the Ampere microarchitecture) feature dy-
namic capabilities enabling resource isolation. The functionality
is called Multi-instance GPU (MIG) [1] and is intended for use in
cloud and HPC environments. MIG enables isolated usage of only
fractions of the GPU (called GPU Instances or GIs), consisting of
several SMs and slices of L2 cache, the main memory, or available
bandwidth. Using this technology, multiple programs or even users
can share one GPU with clearly defined available resources and
without interfering with each other.

Using MIG, therefore, renders the static information, such as the
number of cores, SMs, or main memory or L2 size, useless. Again,
the MIG setting can be captured in sys-sage, so only the available
resources are returned when queried, reflecting the MIG setup.
Fig. 8 presents the previously described workload on the same
NVIDIA A-100 machine, this time using different MIG settings.
The sudden performance decrease is again clearly visible, this time
depending on the amount of resources allocated. When using 2
GIs (‘2g.10gb’, using 1/4 of L2), the change occurs around 10MB.
4 GIs (‘4g.20gb’, using 1/2 of L2) yield the same curve as the full
instance. As described above, since one SM would access only 1/2
of the L2 cache anyway, having the other half of L2 unavailable
does not impact the result.

Overall, this use-case shows that sys-sage correctly and univer-
sally provides the L2 cache size despite the hardware design details
or dynamic changes in the resource availability, thus helping to
correctly estimate the performance of GPU kernels.

6 RELATEDWORK
Regardless of the previously mentioned limitations, hwloc [6] is
widely used and is the de-facto standard in obtaining information
about hardware topology, as it is reliable, easy to use, and avail-
able on many systems. It nicely exposes hardware locality on a
CPU. To address some of the new systems’ complexities, follow-
up works propose extensions to hwloc [13, 14, 16]. They focus on
heterogeneous systems, providing information about GPUs, I/O,
networking, heterogeneous memories, or capturing topologies of
multi-node systems. While this is a step in the right direction, the
main representation remains a static tree structure, which, even
though it is helpful in many cases, has its limits – we address these
limits with our approach.

As an extension to hwloc on CPUs, netloc [4, 15] targets the
network topology and process mapping on HPC systems. It repre-
sents the inter-node network as a map and integrates hwloc’s tree
on-node topology. Even though the network representation enables
more realistic system representation, it is still a static view offering
little flexibility in use-cases. Since the network can be represented
as sys-sage Data Paths, netloc’s topology could be easily integrated
into sys-sage as an additional Data Source.

Other approaches, such as likwid-topology [29] or the Linux
lscpu tool [27], provide similar information as hwloc. There have
also been smaller-scale efforts to present system topologies, such
as the systopo tool [20] or Topo library [18]. However, their func-
tionality is limited to a specific task, and they have often not been
maintained.

Other works describe applications that require some system
information beyond what hwloc provides, but their main goal is
not to provide this information itself. They specifically implement
the needed topology-related functionality as a one-off and provide it
to themain program. sys-sage can be used there as a flexible solution
to provide the needed information, making sys-sage a central and
unified data source for these approaches. Doing so would prevent
reimplementing the same functionality and enable the applications
to profit from the more in-depth analysis sys-sage enables.

Mpibind [22] presents an algorithm for (MPI+OpenMP+CUDA)
hybrid applications, which maps threads or processes to hardware
based on the memory system. It combines information from several
sources, such as hwloc or nvidia-smi, to retrieve the hardware
information. Using sys-sage as a data backend would reduce the
complexity of managing data from these different sources. Also,
it would simplify the whole algorithm, as some of the computed
topology information is available via sys-sage out-of-the-box.

Leon et al. [23] present a scheduling framework for heteroge-
neous architectures. It maps the tasks (processes, threads, GPU
kernels) to hardware resources based on different requirements and
system/application characteristics. Also in this case, sys-sage would
be a good candidate to provide system-related information. More-
over, many tasks of the proposed Mapping coordinator, such as
tracking resource utilization, could be done in sys-sage in a unified
manner as a single backend, further reducing software complexity
and improving reusability.

There are many applications requiring some information about
system topology and capabilities. They often use hwloc as a ba-
sis and implement the remaining functionality manually. To our

ICS ’24, June 4–7, 2024, Kyoto, Japan Vanecek et al.

knowledge, very little work focuses on providing detailed and com-
prehensive information about system topology and capabilities in
a universal manner that enables providing custom information and
attaching additional data to it. Adopting the sys-sage approach,
which is specifically designed for that purpose, will benefit many
such application scenarios.

7 CONCLUSIONS AND FUTUREWORK
The increasing complexity of current and future HPC systems ren-
ders a static hierarchical system topology insufficient for fully un-
derstanding and efficiently utilizing these systems, in particular
for complex workloads. A wide range of APIs and tools exist to
enable applications to query the needed hardware- and system-data
to capture the platform’s structure as well as dynamic properties.
The hwloc library is the most prominent example of such an API/-
tool and enables the query of static topology information; however,
more information, in particular from other sources as well as dy-
namic information, is needed to obtain a better understanding of
the system.

To address this gap, we introduced sys-sage, which provides
both a highly detailed and fully dynamic view on HPC systems
and their attributes. It combines two ways of representing system
information – a mostly static Component Tree and dynamic Data
Paths. The information is correlated with each other by mapping
the two views onto each other, creating a holistic view capturing
both static and dynamic information, and providing it to the user
in a single interface. We defined the requirements for the solution
so that it can be applied to a wide spectrum of problems. Based
on the analysis, we presented our library implementation and its
capabilities.

We brought forward three use-cases where sys-sage was adopted
to help to understand the underlying system – in the first case,
we showed how to use the library to model dynamically changing
systems, in particular to track dynamic changes to cache configura-
tions and how to use it to steer algorithmic decisions, like tiling. In
the second use case, sys-sagewas used to provide flexible storage for
performance data and to connect this data with the underlying HW
of the measured system, offering a simple way of extracting both
measurements and context information together. Finally, the third
use-case presented capabilities of sys-sage on GPUs with dynami-
cally changing properties, going beyond the static and incomplete
information in native interfaces. These three very different use-
cases show the versatility of our solution and demonstrate the extra
functionality of sys-sage over the state-of-the-art approaches.

In the near future, we will keep adding more default Data Sources
to provide the users with a vast majority of the data they need out-
of-the-box. We also plan to extend the scope of our approach to
span multiple heterogeneous components and multiple nodes to
showcase the versatility and scalability of sys-sage.

ACKNOWLEDGMENTS
The DEEP-SEA project has received funding from the European
Union’s Horizon 2020/EuroHPC research and innovation programme
under grant agreement No 955606. National contributions from the
involved state members match the EuroHPC funding.

REFERENCES
[1] 2020. NVIDIA Multi-Instance GPU and NVIDIA Virtual Compute Server.

Technical Report. https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/solutions/resources/documents1/Technical-Brief-Multi-Instance-
GPU-NVIDIA-Virtual-Compute-Server.pdf.

[2] 2024. Top500. https://www.top500.org/. Accessed: 2024-01-10.
[3] Deva Bodas, Justin Song, Murali Rajappa, and Andy Hoffman. 2014. Simple

power-aware scheduler to limit power consumption by hpc system within a
budget. In 2014 Energy Efficient Supercomputing Workshop. IEEE, 21–30.

[4] Cyril Bordage, Clément Foyer, and Brice Goglin. 2018. Netloc: a Tool for Topology-
Aware Process Mapping. In Euro-Par 2017: Parallel Processing Workshops: Euro-Par
2017 International Workshops, Santiago de Compostela, Spain, August 28-29, 2017,
Revised Selected Papers 23. Springer, 157–166.

[5] James M Brandt, Ann C Gentile, Jonathan Edwin Cook, Benjamin A Allan, Jea-
nine Cook, Omar Aaziz, Thomas Tucker, Naksinehaboon Nichamon, Narate
Taerat, Emre Ates, et al. 2018. Runtime HPC System and Application Performance
Assessment and Diagnostics. Technical Report. Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States).

[6] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,
Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. 2010.
hwloc: A generic framework for managing hardware affinities in HPC applica-
tions. In 2010 18th Euromicro Conference on Parallel, Distributed and Network-based
Processing. IEEE, 180–186.

[7] Dimitrios Chasapis, Miquel Moretó, Martin Schulz, Barry Rountree, Mateo Valero,
and Marc Casas. 2019. Power efficient job scheduling by predicting the impact
of processor manufacturing variability. In Proceedings of the ACM International
Conference on Supercomputing. 296–307.

[8] Jack Choquette, Edward Lee, Ronny Krashinsky, Vishnu Balan, and Brucek
Khailany. 2021. 3.2 the A100 datacenter GPU and Ampere architecture. In 2021
IEEE International Solid-State Circuits Conference (ISSCC), Vol. 64. IEEE, 48–50.

[9] Yiannis Georgiou, Emmanuel Jeannot, Guillaume Mercier, and Adèle Villiermet.
2017. Topology-aware resource management for HPC applications. In Proceedings
of the 18th International Conference on Distributed Computing and Networking.
1–10.

[10] Balazs Gerofi, Masamichi Takagi, and Yutaka Ishikawa. 2014. Exploiting Hidden
Non-uniformity of UniformMemory Access onManycore CPUs. In Euro-Par 2014:
Parallel Processing Workshops, Luís Lopes, Julius Žilinskas, Alexandru Costan,
Roberto G. Cascella, Gabor Kecskemeti, Emmanuel Jeannot, Mario Cannataro,
Laura Ricci, Siegfried Benkner, Salvador Petit, Vittorio Scarano, José Gracia,
Sascha Hunold, Stephen L. Scott, Stefan Lankes, Christian Lengauer, Jesús Car-
retero, Jens Breitbart, and Michael Alexander (Eds.). Springer International Pub-
lishing, Cham, 242–253.

[11] Alfredo Giménez, Todd Gamblin, Ilir Jusufi, Abhinav Bhatele, Martin Schulz, Peer-
Timo Bremer, and Bernd Hamann. 2017. Memaxes: Visualization and analytics
for characterizing complex memory performance behaviors. IEEE transactions
on visualization and computer graphics 24, 7 (2017), 2180–2193.

[12] Alfredo Giménez, Benafsh Husain, David Böhme, Todd Gamblin, and Martin
Schulz. 2015. Mitos: A Simple Interface for Complex Hardware Sampling and
Attribution.

[13] Brice Goglin. 2014. Managing the topology of heterogeneous cluster nodes with
hardware locality (hwloc). In 2014 International Conference on High Performance
Computing & Simulation (HPCS). IEEE, 74–81.

[14] Brice Goglin. 2016. Towards the Structural Modeling of the Topology of next-
generation heterogeneous cluster Nodes with hwloc. Research Report. Inria. https:
//inria.hal.science/hal-01400264

[15] Brice Goglin, Joshua Hursey, and Jeffrey M Squyres. 2014. Netloc: Towards a
comprehensive view of the HPC system topology. In 2014 43rd International
Conference on Parallel Processing Workshops. IEEE, 216–225.

[16] Brice Goglin and Andrès Rubio Proaño. 2022. Using Performance Attributes for
Managing Heterogeneous Memory in HPC Applications. In 2022 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE,
890–899.

[17] Thomas Grass, César Allande, Adrià Armejach, Alejandro Rico, Eduard Ayguadé,
Jesus Labarta, Mateo Valero, Marc Casas, and Miquel Moreto. 2016. MUSA: a
multi-level simulation approach for next-generation HPC machines. In SC’16:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 526–537.

[18] Samuel Grossman. 2016. Topo. https://github.com/stanford-mast/Topo.
[19] Thomas Gruber, Jan Eitzinger, Georg Hager, and Gerhard Wellein. 2019. likwid 5:

Lightweight performance tools. In Presented on SC19 Conference, Denver, CO.
[20] Martin Grund. 2011. systopo. https://github.com/grundprinzip/systopo.
[21] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal, Chris Gianos,

Ronak Singhal, and Ravi Iyer. 2016. Cache QoS: From concept to reality in the
Intel® Xeon® processor E5-2600 v3 product family. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 657–668.

[22] Edgar A León. 2017. mpibind: A memory-centric affinity algorithm for hybrid
applications. In Proceedings of the International Symposium on Memory Systems.

https://inria.hal.science/hal-01400264
https://inria.hal.science/hal-01400264
https://github.com/stanford-mast/Topo
https://github.com/grundprinzip/systopo

sys-sage: A Unified Representation of Dynamic Topologies & Attributes on HPC Systems ICS ’24, June 4–7, 2024, Kyoto, Japan

262–264.
[23] Edgar A León, Balazs Gerofi, Julien Jaeger, Guillaume Mercier, Rolf Riesen,

Masamichi Takagi, and Brice Goglin. 2020. Application-Driven Requirements
for Node Resource Management in Next-Generation Systems. In 2020 IEEE/ACM
International Workshop on Runtime and Operating Systems for Supercomputers
(ROSS). IEEE, 1–11.

[24] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. 1999. PAPI:
A portable interface to hardware performance counters. In Proceedings of the
department of defense HPCMP users group conference, Vol. 710.

[25] Alessio Netti, Micha Müller, Axel Auweter, Carla Guillen, Michael Ott, Daniele
Tafani, and Martin Schulz. 2019. From Facility to Application Sensor Data:
Modular, Continuous and Holistic Monitoring with DCDB. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis (Denver, Colorado) (SC ’19). Association for Computing Machinery, New
York, NY, USA, Article 64, 27 pages. https://doi.org/10.1145/3295500.3356191

[26] NVidia 2022. CUDA Runtime API – API Reference Manual. NVidia,
https://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf.

[27] Cai Qian, Karel Zak, and Heiko Carstens. 2021. lscpu(1) – Linux manual page.
man7.org, man7.org.

[28] Sabela Ramos and Torsten Hoefler. 2017. Capability models for manycore memory
systems: A case-study with xeon phi KNL. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 297–306.

[29] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments. In 2010 39th
international conference on parallel processing workshops. IEEE, 207–216.

[30] Josef Weidendorfer, Carsten Trinitis, Sebastian Rückerl, and Michael Klemm.
2017. Cache-Partitionierung im Kontext von Co-Scheduling. PARS-Mitteilungen:
Vol. 34, Nr. 1 (2017).

[31] Wenxiang Yang, Cheng Chen, and Jie Yu. 2022. Topology-Aware Node Allocation
on Supercomputers with Hierarchical Network. In 2022 IEEE 24th Int Conf on
High Performance Computing & Communications; 8th Int Conf on Data Science
& Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor,
Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). IEEE,
1095–1100.

Received 19 January 2024; revised 16 April 2024; accepted 21 April 2024

https://doi.org/10.1145/3295500.3356191

	Abstract
	1 Motivation
	2 Data Discovery Approaches and sys-sage
	2.1 Use-Case Descriptions
	2.2 Functionality Scope
	2.3 Integration with sys-sage

	3 Design of sys-sage
	3.1 Conceptual Elements of sys-sage
	3.2 Internal Representation

	4 sys-sage API and Implementation
	4.1 API Categorization
	4.2 Performance of Basic Operations
	4.3 Performance of Dynamic 3rd Party Operations
	4.4 Memory Footprint

	5 Evaluation with Use-cases
	5.1 Cache-aware Algorithm on Dynamically Changing Cache
	5.2 Capturing Memory Access Data in sys-sage
	5.3 Performance Estimation on GPUs with Dynamically Changing Memory Topology

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

