GPUscout: Locating Data Movement-related
Bottlenecks on GPUs

Soumya Sen
soumya.sen@tum.de
Technical University of Munich
Garching, Bavaria, Germany

Abstract

GPUs pose an attractive opportunity for delivering high-
performance applications. However, GPU codes are often
limited due to memory contention, resulting in overall per-
formance degradation. Since GPU scheduling is transparent
to the user, and GPU memory architectures are very complex
compared to ones on CPUs, finding such bottlenecks is a
very cumbersome process.

In this paper, we present a novel method of systematically
detecting the root cause of frequent memory performance
bottlenecks on NVIDIA GPUs that we call GPUscout. It con-
nects three approaches to analyzing performance - static
CUDA SASS code analysis, sampling warp stalls, and kernel
performance metrics. Connecting these approaches, GPUs-
cout can identify the problem, locate the code segment where
it originates, and assess its importance.

This paper illustrates the capabilities and the design of
our implementation of GPUscout. We show its applicability
based on three commonly-used kernels, yielding promising
results in terms of accuracy, efficiency, and usability.

CCS Concepts: - Computing methodologies — Parallel
computing methodologies; - General and reference —
Metrics; Performance; « Computer systems organization
— Parallel architectures.

Keywords: High performance computing, Performance anal-
ysis, NVIDIA, GPU, CUDA, Data-movement, Profiler, SASS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SC-W 2023, November 12—-17, 2023, Denver, CO, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0785-8/23/11...$15.00
https://doi.org/10.1145/3624062.3624208

Stepan Vanecek
stepan.vanecek@tum.de
Technical University of Munich
Garching, Bavaria, Germany

Martin Schulz
schulzm@in.tum.de
Technical University of Munich
Garching, Bavaria, Germany

ACM Reference Format:

Soumya Sen, Stepan Vanecek, and Martin Schulz. 2023. GPUscout:
Locating Data Movement-related Bottlenecks on GPUs. In Work-
shops of The International Conference on High Performance Com-
puting, Network, Storage, and Analysis (SC-W 2023), November 12—
17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3624062.3624208

1 Introduction

Memory and data transfer speeds have been rising at a much
slower pace than computing power, leading to severe perfor-
mance limitations in applications caused by data transfers.
Moreover, also from the energy perspective, the cost of data
transfers is starting to dominate over the cost of computation
in HPC systems [9]. Therefore, suboptimal memory access
patterns in an application can have a huge negative impact
both in terms of application performance and energy con-
sumption. If the needed data is not provided quickly enough,
the computation of a program cannot progress and is stalled.
Hence, analyzing and optimizing data movements is cru-
cial in increasing the overall performance of many (HPC)
applications.

Throughout the last few years, GPUs have evolved into
highly parallel computing units, allowing them to perform a
wide range of general-purpose computations. This character-
istic has made GPUs an interesting option when designing
HPC systems, as scalable HPC algorithms often can make
use of the wide parallelism GPUs offer. However, especially
in such scenarios, memory access patterns are critical to
support the high data needs of wide parallelism, and this
can even amplify the effect of suboptimal memory accesses.
Moreover, as GPU scheduling is transparent to the user, and
the memory hierarchy is very complex, getting an under-
standing of data movements on the GPU is a complex task.
This increases the need for effective and easy-to-use perfor-
mance tools to detect and mitigate such scenarios.

GPU profilers are used extensively to measure the per-
formance of CUDA-accelerated codes on NVIDIA GPUs.
NVIDIA Nsight Compute [21], a successor to nvprof [19], is
designed to assist CUDA kernel profiling with a powerful
set of features driven by NVIDIA’s own insights. Addition-
ally, there are multiple community-driven projects that work
on the premise of performance measurement of GPU ker-
nel execution. Rice University’s HPCToolkit Performance
Tool [25] measures and analyses the performance of CPU

https://doi.org/10.1145/3624062.3624208
https://doi.org/10.1145/3624062.3624208

SC-W 2023, November 12-17, 2023, Denver, CO, USA

and GPU applications. It supports measuring CUDA appli-
cations using NVIDIA’s CUPTI APL The TAU (Tuning and
Analysis Utilities) parallel performance system [23] is an-
other open-source toolset for instrumentation, measurement
and analysis of HPC applications. Its approach to measuring
performance was extended for NVIDIA GPU computations
using the TAUcuda [14] measurement library. There are
many other performance measurement and profiling tools
with CUDA support, such as PAPI [3], Score-P/Scalasca [6, 8]
or Vampir [15]. They provide profiling information at differ-
ent granularities.

While the available tools can identify hotspots in a ker-
nel, they lack closer analysis of data movements and mem-
ory behavior inside a GPU. Moreover, if suboptimal behav-
ior is identified, they provide very little insight into the
source of the problem. Nsight Compute, for instance, an-
alyzes measurement data and proposes suggestions at ker-
nel level. While it provides the most metrics compared to
the other tools mentioned above, it fails to point at specific
regions of code that can be optimized, nor advises it the
user about what metrics are relevant for which optimiza-
tions. Other tools mentioned, like HPCToolkit and TAUcuda,
support fine-grained suggestions based on instrumenting
kernels to locate potentially problematic code sections. How-
ever, they do not associate the specific problem with the
metrics derived, leaving this to the user. Moreover, deciding
whether the problematic section has room for improvement
and identifying the actual problem (and therefore also the
potential solution) is left to the user. Finally, the main fo-
cus of these existing tools is mostly compute- rather than
memory-related performance analysis.

In this paper, we present GPUscout, a performance op-
timization tool for CUDA codes. It analyzes CUDA kernels
in great detail to pinpoint performance issues caused by
suboptimal data movements within the complex multi-level
memory hierarchies inside NVIDIA GPUs. GPUscout stati-
cally analyzes the GPU machine code to identify potentially
problematic instruction patterns and combines these with
carefully selected relevant kernel-wide metrics and sampled
warp stall information, to provide a comprehensive analysis
of the found issues, and to assess their severity. Identify-
ing such memory-based bottlenecks can help users to take
steps to avoid or reduce the associated performance penalty.
The focus of the analysis is on data movements inside
the GPU and thus other communication primitives, like
CPU-GPU or GPU-GPU, are NOT considered in the current
work. To the best of our knowledge, there does not exist
another tool that combines static code analysis for NVIDIA
GPUs with kernel-level metrics and warp stall sampling to
precisely identify and provide detailed information about
data-movement-based bottlenecks in NVIDIA GPU kernels.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the relevant background for this work. The
design and workflow of GPUscout are discussed in Section 3.

Sen, et al.

Section 4 presents the methods implemented to detect po-
tential memory-related bottlenecks. Next, Section 5 presents
three kernels used to showcase the work with GPUscout.
Section 6 describes the related work. Finally, Section 7 sum-
marizes our work and presents some of the next steps in the
development of GPUscout.

2 Background

GPUscout is built on top of existing APIs, further analyzing
the data they provide. The fundamental background concepts
presented in this section include the low-level Instruction Set
Architectures (ISAs) — PTX and SASS, the NVIDIA CUPTI
PC Sampling API, and the NVIDIA Nsight Compute CLI

2.1 PTX and SASS

A CUDA kernel is a C/C++-like function that is executed in
parallel on an NVIDIA GPU. When compiling CUDA ker-
nels, the CUDA code is first transformed into an intermedi-
ate representation called Parallel Thread Execution (PTX).
PTX ISA can be considered a low-level parallel execution
assembly for a virtual GPU architecture. It has an unlimited
register count and hence can be considered an abstraction
of the underlying hardware [5]. The PTX representation is
translated into yet another, lower-level, representation called
SASS, which is then executed on the target GPU architecture.
Hence a CUDA kernel can be characterized by two sepa-
rate ISAs: PTX and SASS [2]. To get a better understanding
of the performance characteristics and the data flow inside
the kernel, it is necessary to analyze the sequence of the
actual machine instructions — the SASS. The SASS assembly
is obtained by disassembling the CUDA binary file using
tools like nvdisasm and cuobjdump [18]. The disassembled
file contains the instruction and the destination (+source)
register numbers, which are later used for our analysis.

2.2 CUPTI PC Sampling API

The NVIDIA CUDA Profiling Tools Interface (CUPTI) [17] is
capable of providing data for profiling and tracing tools for
CUDA applications. CUPTI provides several APIs that allow
users to interject tool code, read event counters, and gain
more insights into the behavior of CUDA kernels.
GPUscout utilizes the PC Sampling API to sample PC
(program counter) stalls, providing information about the
various stall reasons and the affiliated CUDA code (and SASS)
line number ! with a low runtime overhead. Given the source
code line information, the collected samples can be used to
identify stalls in certain hotspot regions within a kernel.

2.3 Nsight Compute Metrics

NVIDIA’s Nsight Compute CLI (ncu) [21], a successor to
nvprof [19], provides a simple and customizable way to

IThe source code attribution requires compilation flags -g
-generate-line-info.

GPUscout: Locating Data Movement-related Bottlenecks on GPUs

© &

Nsight
Compute
CLI

CUDA Blnary CUPTI PCSamleng Metrics
SASS Warp Metric
Analysis Stalls Analysis
: Instructions ! Stall reasons' ! Data flow !
, toblame ! i Inkernel !

e

DISPLAY
Detected SASS instructions, stall reasons,
source code line numbers and recommendations

..........

Figure 1. A simplified representation of GPUscout

collect various performance counter values. The metrics are
collected with kernel granularity. Compared to alternatives
like TAUcuda [14], ncu offers more metrics. Apart from using
the native counter values, combining various performance
counters provides more advanced analyses that expose the
GPU memory system in greater detail.

For example, for all the streaming multiprocessors (SMs),
the estimated number of queries to the L2 cache due to local
memory can be expressed as

#SMs x (% cache miss) * (local memory instructions)

where the used metrics can be collected from ncu. This ag-
gregated information helps observe the traffic between the
CUDA cores and the L2 cache.

3 Design of GPUscout

The primary goal of GPUscout is to identify and provide ac-
curate and detailed information about code regions of GPU
kernels with poor performance caused by suboptimal data
movements. To achieve this, GPUscout performs multiple
different analyses of each tested kernel. Combining these
analysis engines, we aim at identifying the memory-related
bottlenecks in the source code, defining the problematic
behavior, and providing detailed information about the ob-
served patterns. The user is informed about the optimization
to consider, is pointed directly at the problematic line in the
CUDA code, and is provided with a detailed analysis of the
problematic section, including kernel-level metrics.

Some recommended modifications from GPUscout might
require the user to add a single keyword, while others might
ask the user to restructure larger parts of their code. While
we cannot claim that the provided recommendations will
always improve the kernel’s performance significantly, our
experience shows that they very often do.

We use three analyses as the pillars of GPUscout:

SC-W 2023, November 12-17, 2023, Denver, CO, USA

1. SASS Analysis,
2. Warp Stalls, and
3. Metric Analysis.

Figure 1 presents a simplified representation of how the
three above-mentioned pillars of GPUscout come together
to provide a detailed analysis of the suboptimal data-access
behavior in the kernel. The first pillar, the SASS Analysis,
analyzes the generated SASS code to look for specific code
patterns, indicating operations causing potentially problem-
atic behavior. The analysis returns the exact locations of the
detected patterns in the code. Using NVIDIA CUPTI libraries,
we then collect PC samples to attribute warp stall reasons to
the instruction detected by the SASS Analysis engine. Hence,
the user learns how often on the instruction of interest which
kind of warp stalls happen. Finally, a look at kernel-wide
aggregated data helps to identify opportunities for memory
improvements in the CUDA code or algorithm used. For this
purpose, various metrics are collected to analyze the data
movements and instruction execution in the kernel.

Static SASS Code Analysis. Static code analysis is the
core part of GPUscout. It is responsible for identifying the
bottlenecks and locating them in the source code. The anal-
ysis is performed at the assembly code of an NVIDIA GPU
- the SASS - hence SASS analysis.? GPUscout operates di-
rectly on the disassembled SASS code without assuming the
availability of the source CUDA program.

Each CUDA kernel is analyzed for various selected in-
struction and register usage patterns. Each analysis seeks a
specific potentially suboptimal behavior (bottleneck). The
SASS analysis then consists of multiple independent such
checks for said patterns. A closer description of these analy-
ses is provided in Section 4. Due to the modular architecture
of GPUscout, all analyses are standalone, hence new bot-
tleneck analyses can easily be added. Once an analysis has
identified a potential bottleneck, the user is informed that
such a pattern (potential bottleneck) was found. GPUscout
points to the registers and corresponding source code line
numbers causing the memory bottleneck. As the main out-
put of the SASS Analysis, the user is advised to investigate
potential optimizations at the given lines.

Warp Stalls. The CUPTI PCSampling API is used to fetch
instruction stalls at the line numbers identified by the above-
described static SASS code analysis. These stalls can occur
due to various reasons, such as waiting for a branch to re-
solve, a memory operation to complete, or resources needed
for execution. GPUscout offers more verbose explanations
of the observed stalls, giving the user the needed context to
understand the behavior. Knowing the reason for the stall
can help assess the essence of the issue. For example, the
stall reasons can point to a memory throttle due to a high
number of pending memory operations, which indicates a

2 Analogously to SASS, a PTX analysis is performed in Section 4.4.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

drop in performance. This, in turn, can be minimized by
combining several memory transactions into one, such as
using vectorized loads as described in Section 4.1.

Performance metrics. As a second step, we collect mul-
tiple kernel-wide aggregate performance metrics at runtime
to model the GPU execution flow and the overall program
structure. This data helps users to assess the feasibility of
the planned code changes, as well as the performance im-
pact of the already-implemented modifications. GPUscout
uses NVIDIA Nsight Compute [21] to collect requested per-
formance metrics from the GPU, as it provides an easy and
customizable interface to collect the necessary metrics. Since
obtaining these metrics comes with significant overhead, the
number of collected metrics is kept to minimum. We store
the metrics and mangled kernel names to ensure consistency
across all the metrics in each run of any given kernel.

These performance metrics detail a logical representation
of the data movement through the various memory compo-
nents of the GPU. For example, an L2 cache miss rate of 70 %
denotes that a majority of the requests to the L2 cache are
resolved at DRAM, indicating poor L2 cache utilization.

3.1 Workflow

The internal design of GPUscout is kept as modular and
independent as possible to maintain and extend it easily in
the future. Broadly speaking, the workflow of GPUscout can
be split into four stages:

e Configuration: Before the data collection and the
analysis begins, an initial setup takes place. The CUDA
code needs to be compiled with the flags —arch=sm_xx

-g --generate-line-info. The executable to analyze
and the associated CUDA binary (.cubin) must be
placed in the GPUscout subdirectory. GPUscout then
disassembles these CUDA binaries and stores the gen-
erated SASS codes.

Static Code Instrumentation: With the SASS code
available, our static analysis engine examines the code
to detect and locate possible bottlenecks. The results
are stored for later use.

Dynamic Data Collection: Once everything is set
up, the actual data collection commences. We use the

CUPTI PC Sampling API to obtain information about
the warp stalls on instructions identified previously.
Additionally, we collect selected metrics using the
NVIDIA Nsight Compute CLI
Data Evaluation: In the final step, GPUscout displays
the identified ‘fault-causing’” SASS instructions with
the source code line number and warp stall reasons
alongside specific information tailored to each identi-
fied bottleneck. Additionally, our tool informs the user
about the data movement in the caches based on the
collected metrics.

Sen, et al.

Source code line number

Extra information
related to the register

Stall contribution Kernel name
Bottleneck type (mangled)

SASS Analysis |

-- Register spilling analysis for kernel: _Z3dotPi$_S_ -- Detected Bottlenecks

| WARNING :: A spill detected in line number 144 of your code

Register R19 spilled in[LOAD operation

Previous instruction of R19 before spilling : IADD at line number 129 of code.
INFO :: Total current registers for the SASS instruction: 17

Warp Stalls |

, Stalls are detected with % of occurrence for the SASS instruction
! CUPTI API

! A 4
! stalled_|g_throttle (79.4996 %), stalled_selected (12.6628 %), |
1 stalled_not_selected (0.0255297 %), stalled_mio_throttle (2.62956 %) !
stalled_wait (5.18254 %)

Metric Analysis

INFO :: Data flow in memory for load operations Nsight Compute CLI !

Local memory ---- request load data ----> L1 cache : 4.17837e+06 bytes |
L1 Cache miss % (due to local memory load request) : 0.02 |
L1 cache ---- request load data ----> L2 cache : 835.674 bytes !
L2 Cache miss % (due to L1 load data request) : 99.81 !
L2 cache ---- request load data ----> DRAM : 3.14027e+06 bytes :

For register spilling, check Long Scoreboard stalls: 35.13 % per warp active
For register spilling, check LG Throttle stalls: 17.08 % per warp active
Percentage of total L2 queri®s due to local memory: 1.64476 %

Kernel-wide metrics

Figure 2. Sample output from GPUscout

Dry Run. GPUscout offers a ——dry-run option. This com-
mand only inspects the SASS code to identify hotspots and
memory bottlenecks, thereby making it possible to be exe-
cuted without involving the GPU at all. Although this ex-
amination report misses Warp Stalls and kernel-wide Metric
Analysis, it may serve as a starting point to validating the
configuration and evaluating the kernel performance.

The --dry-run option can help users save time and re-
sources by quickly spotting preliminary performance issues
in the kernel without triggering the costly metric collection.
Additionally, this option extends GPUscout’s usability to
older NVIDIA architectures not supported by ncu, such as
Pascal, where GPUscout can still at least perform the static
SASS analysis.

3.2 Presented Results

Figure 2 shows a sample output from GPUscout. The output
is provided in a text-based form printed to the terminal. The
information provided by the analysis can also be used to
create visual and interactive presentations of the results in
future iterations.

Analogous to the three analyses performed, the output
can be split into three separate sections — the SASS analysis
output, the Warp Stalls information, and the Performance
metrics analysis.

The SASS Analysis shows a bottleneck detected due to
register spilling into the local memory. When there are not

GPUscout: Locating Data Movement-related Bottlenecks on GPUs

enough physical registers, a register is ‘spilled’ to the local
memory of the GPU to make place for a new piece of data.
The spilling, therefore, creates additional memory traffic.
The amount of available registers depends on the GPU itself.

The warning details the register and the source code line
numbers where the spill happened. The user, hence, knows
where exactly in the kernel (i.e., in the source code) the prob-
lem occurs, simplifying the process of locating the bottleneck
significantly. Any additional helpful data is presented along-
side. In our example, the previous SASS instruction executed
by the register hints at an IADD operation that caused the
spill. Again, the source code line information is provided,
so that the user knows where exactly to look. Additionally,
GPUscout includes information regarding operations within
a for-loop, the read-only nature of a register, or the live
register pressure of an instruction.

Following the SASS analysis, GPUscout correlates the
Warp Stalls extracted using the CUPTI APL The output
shows the contribution of 1g_throttle stall to be the largest
offender for the assembly instruction identified by the SASS
analysis. The stalled_lg_throttle indicates that a warp
was stalled waiting for the L1 instruction queue handling
local and global (LG) memory operations. This is typically
caused by executing local or global memory operations too
frequently.’ Since register spilling increases the L1 traffic,
reducing it should also reduce the 1g_throttle stall. We can
verify that by comparing the stall numbers of our updated
implementation.

The final block in Figure 2, the Metric Analysis, out-
lines additional data based on kernel-wide metrics gathered
using ncu. The metrics allow users to gain deeper insight
into how the kernel is utilizing the GPU memory resources
overall, thereby identifying potential areas of optimization.
GPUscout provides information about the amount of data
transfers through the CUDA global memory. In case shared
or local memory is used, additional data regarding the corre-
sponding memory requests and cache miss rates are collected.
Alongside, GPUscout presents a set of computed metrics that
should be paid attention to, given the recommended opti-
mization. For the example at hand, increased memory traffic
can impact performance adversely, especially for bandwidth-
limited code. Therefore, the percentage of traffic to the L2
cache due to local memory requests is shown.

4 Bottleneck Detection

GPUscout employs the static SASS analysis to identify vari-
ous frequently-occuring data-movement-based bottlenecks
in the analyzed kernel. Each bottleneck is examined by a
specialized routine that searches for specific instructions and

3A more verbose interpretation of the stall reasons can be looked up in
GPUscout ’s manual.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Search for Is load Yes DISPLAY:)
. LDG vectorized? 64- or 128-bit
instructions vectorized load

lNo

Load from
adjacent memory
locations?

DISPLAY:
Info about load

¢Yes

’ Ay

.] L}

DISPLAY: ' Add metrics and !
Recommended to use) . 1
: 1+ stall information
vectorized load ' |

Figure 3. Workflow of vectorized load SASS analysis

patterns in the SASS. As a result of the SASS analysis, GPUs-
cout provides information about the type of potential bottle-
neck, its location in the CUDA source code, and additional
case-specific information. A provided recommendation is to
be understood as highlighting a potential problem. It is up
to the user to investigate whether the algorithm can accept
the suggested change, and whether it will improve the per-
formance (GPUscout provides metrics to support such an
assessment).

This section sketches an overview of some of the employed
strategies. To complement the SASS analysis, some interest-
ing performance metrics and stall reasons are presented.
Sections 4.1-4.3 present the analyses in more detail, while
we sketch the essence of other analyses in Sections 4.4-4.7.

4.1 Use Vectorized Loads

A CUDA kernel can load and store data from global mem-
ory via 32-, 64-, or 128-bit transactions that are aligned to
their size. A 32-bit load is denoted as an LDG. E instruction
in the SASS code. Since each memory operation translates
to a transaction and requires one instruction, loading larger
amounts of data in one piece can improve the memory band-
width utilization. Alternatively, if one CUDA kernel pro-
cesses multiple elements, we can reduce the number of CUDA
kernels spawned. To achieve that, vectorized load operations
(LDG.E.{64,128}) can be used. This allows obtaining multi-
ple pieces of data in a single fetch, resulting in only a fraction
of the load instructions executed.

SASS Analysis. GPUscout identifies opportunities to con-
vert global loads into vectorized loads by analyzing the SASS
assembly code. Figure 3 illustrates the decision-making pro-
cess of recommending the user to modify the code to use
vectorized loads. GPUscout begins by searching for non-
vectorized 32-bit loads (LDG. E instruction). The key deciding
factor is whether multiple 32-bit load operations access data
from neighboring memory locations. If so, the user is advised
to use vectorized loads for the corresponding registers. The

SC-W 2023, November 12-17, 2023, Denver, CO, USA

report, of course, shows the corresponding source code line
number.

Metrics. The register pressure is defined as the ratio of
the required to available registers. Using vectorized loads
may increase the register pressure, as multiple registers are
filled at once. An increased register pressure may lead to a
decreased occupancy on an SM.* This may negatively impact
performance. Hence, GPUscout provides information about
register pressure to help the user decide whether increasing
an already high register pressure could potentially bring even
more harm than what the vectorizing benefit is. GPUscout
presents the number of additional registers needed by each
SASS instruction, showing if/how much each instruction
affects the overall register pressure. Finally, after implement-
ing the modifications, the user can compare the new register
pressure to the old values.

Warp Stalls. For a non-vectorized load, a high percentage
of long scoreboard dependency stall points to a high number
of cycles waiting on L1TEX operation (global or texture
memory operation). Vectorized loads can reduce the number
of stalled cycles by increasing the memory access bandwidth.
Therefore, checking the long_scoreboard stall metric helps
to assess the severity of the issue posed by non-vectorized
loads.

4.2 Register Spilling

Register spilling occurs when a program needs more reg-
isters than are available. The data from registers must be
temporarily stored (spilled) to the local memory so that other
data can be loaded to the particular register. This causes an
increase in instruction count and memory traffic, leading to
decreased performance.

SASS Analysis. An instruction STL R1, R2 indicates
spilling(storing) the register R2 to the local memory at the
address given by R1 (analogously for load LDL). To under-
stand the cause of the spill, we need to find out which SASS
instruction is to blame for the spill. Since spilling occurs
if there are not enough registers to hold a variable, an op-
timistic assumption would be that the data written to the
spilled register was due to an arithmetic operation. GPUs-
cout, therefore, presents the registers that spilled, the rele-
vant source code lines, and the last operation that caused
the spill to happen.

Metrics. The spills based on high register pressure lead
to supplementary data movement between registers and
local memory. GPUscout collects this extra register pressure
information and thus helps the user optimize the kernel to
limit spills.

4Low occupancy results in inefficient issue of instructions because there are
not enough available warps to hide latency between dependent instructions.

Sen, et al.

Since suboptimal memory usage negatively affects per-
formance, our tool presents a detailed analysis of the data
migration through the GPU caches. The kernel requests data,
among others, from global and local memory. These requests
are first received by the L1 cache. On an L1 cache miss, the
request is forwarded to the multi-banked L2 cache. L1 cache
miss percentages due to global and local memory data re-
quests are obtained as separate ncu metrics. Using this miss
percentage, the amount of data requested from the L2 cache
is calculated as well.

({L1,L2} miss %) * (bytes requested from cache)

Similarly, on an L2 cache miss, the request continues to
the slower DRAM. To further analyze the impact of register
spilling on the GPU memory, the total number of data re-
quests between the streaming multiprocessors (SMs) and L2
cache is measured and presented. Based on this, the user can
assess whether register spills occur in a bandwidth-limited
code, hence if reducing these spills can significantly increase
performance.

Warp Stalls. It is mentioned in [20] that warps can be
stalled waiting for a scoreboard dependency due to local
memory operation. Moreover, the warp may stall waiting for
local memory operations to fill the L1 instruction queue too.
So, long_scoreboard and 1g_throttle (Local and Global
memory throttle) stalls are shown to the user to explain the
impact of the register spill. On containing the spill, the user
should observe a reduced portion of the aforementioned
stalls.

4.3 Use Shared Memory

Shared memory offers lower latency than global memory.
For shared memory to be useful, the data must be reused
many times. Otherwise, the overhead of transferring the
data to/from the shared memory will outweigh the bene-
fits. GPUscout detects data that is accessed repeatedly as
potential candidates for shared memory optimization.

SASS Analysis. The decision-making process to recom-
mend the usage of shared memory instead of global memory
is illustrated in Figure 4. For each address being accessed
from global memory, GPUscout counts how many times the
data from the particular address is loaded repeatedly. A sec-
ond counter detects the number of arithmetic instructions
involving said register. Additionally, the presence of the reg-
ister inside a for loop denotes repeated calls to request data
from the global memory, even amplifying the problematic
behavior. Frequent arithmetic instructions on a register, es-
pecially inside a for-loop, are marked as likely candidates
for using shared memory.

Metrics. Number-of-way bank conflicts are relevant when
using shared memory. It describes how many threads ac-
cess the same bank simultaneously, as the accesses will be

GPUscout: Locating Data Movement-related Bottlenecks on GPUs

Search for]
. LDG Trac_k the

. ! register

instructions J

Does register
write to
shared memory?,

Count additional
LDG instructions
and
check arithmetic
instructions
writing data to the
register

DISPLAY:
Recommend to use
shared memory,
inside for-loop

Is the
LDG instruction
inside for-loop?

Arithmetic counte
greater than
load counter?

DISPLAY:
Recommend to use
shared memory,
not in for-loop

Figure 4. Simplified flowchart on the methodology to rec-
ommend using shared memory

serialized. Since ncu does not currently provide this met-
ric (only number of bank conflicts is available), GPUscout
approximates this value. It is computed as # of shared
memory load transactions / # of shared memory
load accesses, which are both obtained from ncu. One
transaction per access indicates no bank conflicts, 32 trans-
actions denote a 32-way bank conflict where all the accesses
are serialized. Hence, the higher the ratio, the worse the
pipeline performance, which is consistent with a low shared
memory efficiency metric from ncu.

4.4 Use Shared Atomics

An atomic operation performs a read-modify-write opera-
tion by non-interfering threads on data residing in the global
or shared memory [16]. Global atomic is a kernel-wide seri-
alization, typically getting resolved in the L2 cache. Shared
atomics, however, results in serialization at the block level,
compared to device-wide. Of course, due to its nature, shared
atomics only work as a synchronization point within one
thread block, i.e., one SM. GPUscout displays the atomic in-
structions count for global and shared memory alongside the
corresponding source code line numbers. Frequent global
atomic instructions compared to shared atomics typically in-
dicate a potential memory bottleneck. Therefore, GPUscout
warns of global atomics especially detected in a for-loop,
where repeated serialization even amplifies the performance
degradation.

In such a scenario, 1g_throttle warp stall will occur
often. Using shared atomic can reduce this problem. On the
other hand, shared atomics involve increased utilization of
memory input/output (MIO) pipelines, potentially leading to
a high number of MIO stalls. The user is therefore advised
to watch out for MIO stalls after updating the atomics.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Finally, GPUscout also analyzes the atomic data move-
ment in the GPU, usually resulting in 100 % L1 cache miss,
and some atomics being resolved in the L2 cache, others in
DRAM.

4.5 Use Read-only Cache

The NVIDIA nvcc compiler (starting from compute capabil-
ity 3.5) offers a way to hint about pointer aliasing using the
keyword __restrict__, thus hinting that the load opera-
tions may go through read-only caches. Using the cache de-
signed for read-only data, the compiler can optimize more ag-
gressively, especially the order of memory accesses, thereby
reducing the number of memory accesses.

GPUscout implements a strategy to identify global mem-
ory accesses in the CUDA kernel that can potentially be
marked with __restrict__. The SASS analysis observes for
each such load instruction whether it is read-only throughout
the kernel. For such registers, the user is advised to use the
__restrict__ keyword. The compiler optimizations due to
restricted pointers can improve performance unless the cor-
responding register pressure is too high. Hence, GPUscout
provides the register pressure information as well.

4.6 Use Texture Memory

Texture memory is a type of global memory with a dedicated
cache, which is optimized for spatially-local accesses, where
threads in a warp read memory addresses close by. To detect
spatial locality, the SASS analysis of GPUscout seeks data
accesses from adjacent global memory addresses, such as the
following:

Listing 1. Example SASS for texure memory.

LDG.E.SYS R0, [R2] :
LDG.E.SYS R5, [R4] ;
LDG.E.SYS R7, [R4+-0x8] ;
LDG.E.SYS R9, [R2+-0x8] ;
STG.E.SYS [R4], R9 ;

The example SASS code shows four loads from global
memory. Loads to R@ and R9 fetch data from adjacent mem-
ory addresses R2 and R2+-0x8. This proximity hints at some
spatial locality to the read access pattern. If these registers
are read-only, they are potential candidates for using texture
memory. The same holds for loads to R5 and R7.

Too many outstanding requests may fill the TEX pipeline,
resulting in warp stalls. This can be observed through an
increase in tex_throttle stalls. Additionally, with frequent
texture operations, warps might stall waiting for a score-
board dependency on texture memory data accesses. There-
fore, the long_scoreboard stalls are to be observed.

4.7 Datatype Conversions

Datatype conversions are expensive operations on GPUs,
as they increase the instruction count and might require

SC-W 2023, November 12-17, 2023, Denver, CO, USA

-- Vectorized load analysis for kernel: mixbench --

WARNING :: Use vectorized load for register R2 at line 55 of your code.
It has 7 adjacent memory accesses by the compiler.

-- Shared memory analysis for kernel: mixbench --

WARNING :: Use shared memory for register R9 at line 55 of your code.

It has 1 global load count and 43 computation instruction counts.
It seems to be in a for loop.

Figure 5. Tool output (Mixbench naive implementation)

frequent utilization of several pipelines on the GPU. Hence,
conversions such as F2F (floating point to floating point) and
I2F (integer to floating point) should be avoided, if at all fea-
sible. To indicate that such conversions take place, GPUscout
presents a total count of the conversions detected, alongside
the corresponding line numbers in the source code.

5 Case Studies

We showcase the functionality of GPUscout by presenting
three use-cases based on real-world applications and bench-
marks. Our results demonstrate how the recommendation
system operates. Furthermore, we reveal that significant per-
formance gains can be achieved by adapting the kernels
based on GPUscout’s suggestions.

The analyses and measurements were carried out on an
NVIDIA Tesla V100 GPU. The GPU (Volta microarchitecture)
has 80 SMs x 64 threads and 16 GB DRAM>.

5.1 Mixbench

Mixbench [10, 11] is a GPU benchmarking suite that aims
at evaluating GPUs and CPUs on mixed operational inten-
sity kernels. The CUDA implementation (mixbench-cuda),
considered in this use-case, executes single-precision, double-
precision, and integer-type multiply-add (MAD) operations.

We used GPUscout to examine the benchmark_func ker-
nel. It returned the following suggestions:

1. Favoring shared memory and
2. Using vectorized global memory loads

for better performance, as shown in Figure 5.

A 32-bit global memory load fetches data from the register
address R2. It also reads seven adjacent addresses. This can be
improved by using a vectorized load for register R2, to load
contiguous data more efficiently. For the double-precision
implementation, GPUscout detected a 64-bit width vector-
ized read performed by the compiler. Apart from the register
number, GPUscout also mentions line number 55, where
this instruction originates. This line loads elements from
g_data to tmps, which is a memory-intensive operation (cf.
Listing 2).

5CUDA version 11.6.1, GCC version 11.2.0 and Linux kernel 5.3.18.

Sen, et al.

The second recommendation regarding shared memory
corresponds to the same line number, as register R9 is in-
volved in multiple loads and computationally expensive arith-
metic operations. Additionally, the instruction is in a for-loop,
hence potentially repeating many times. This is what trig-
gered the second bottleneck warning, asking the user to use
shared memory to profit from its lower latency on repeated
accesses.

We follow GPUscout’s first suggestion — to use 128-bit
wide vectorized memory access to load the data. Listing 2
shows the CUDA kernel modification for single-precision
floating point data, where float4* x is 128-bit aligned using
reinterpret_cast<float4*>. Since, the hardcoded vector
size in the original benchmark is divisible by 4, we do not
have to consider any potential remainder-loop. The previ-
ously reported memory-intensive load operation at line 55
is modified to use vector datatypes, namely int4, double4,
or float4. Since the compiler lacks support of MAD opera-
tions for vector datatypes, the corresponding functions had
to written. Consequently, the loop now runs for a quarter
times since four elements are now handled in each iteration.

Listing 2. Code modification (Mixbench).
[OLD]
for(int j=0; j<granularity; j++)
tmps[j] = g_data[...];

for(int i=0; i<compute_iterations; i++)
tmps[j] = mad(tmps[j],tmps[j],seed);

[NEW]

for(int j=0; j<granularity/4; j++)
reinterpret_cast<float4«>(tmps)[j] =
reinterpret_cast<float4+«>(g_data) [...];

for(int i=0; i<compute_iterations; i++)
reinterpret_cast<float4+>(tmps)[j] =
mad(reinterpret_cast<float4«>(tmps)[j],
reinterpret_cast<float4+>(tmps)[j],seed);

We rerun the analysis on the updated kernel. Compared to
the baseline, GPUscout showed a decrease in long scoreboard
stalls from 70 % to 62 % per active warp for the modified
kernel. This indicates fewer stalls due to waiting for a score-
board dependency on a global memory load operation, as
vectorized loads fetch multiple data elements in one trans-
action. Additionally, due to an increase in register pressure,
the occupancy achieved dropped from 92 % to 83 %, thereby
showing the effectiveness of the tool in pointing at potential
caveats in using vectorized loads.

For an iteration count of 96, this simple optimization
shows a performance improvement of 3.77X, 3.86%, and
4.44x for single-precision, double-precision, and integer MAD
operations, respectively. This performance improvement is

GPUscout: Locating Data Movement-related Bottlenecks on GPUs

primarily based on increased bandwidth utilization and a de-
creased number of instructions to execute during vectorized
loads.

5.2 Heat Transfer Simulation

A 2D heat transfer simulation of an isotropic material is a
computationally challenging problem. The Jacobi iterative
solver [22] is a frequently-used approach to compute heat
transfers on GPUs due to its highly parallel nature. It consec-
utively computes the time steps of our heat transfer problem.
For each data point, an iteration of a 2D heat transfer is
computed as:

Tnew = Torp+k*(Trop+Teorrom+Trerr+TricHT —4*ToLD)

So, the new value of each point depends on the neighboring
cells.

We analyze such a Jacobi kernel with GPUscout, which
recommended

1. using texture memory or shared memory,

2. using vectorized loads from the global memory,
3. favoring the __restrict__ keyword, and

4. minimizing datatype conversions.

We update the 2D-stencil code to use texture memory
(tex2D()) and rerun the GPUscout analysis. The report out-
lined that the warp stalls due to TEX throttle had considerably
moved up to 24.65 % (from 0 % because of no TEX operations)
due to high utilization of the TEX pipeline. The analysis of
the naive implementation already warned us to look after
this metric.

The metric analysis outlined that the texture memory
requested 221760 B of data to the texture cache. 11.5 % of
those missed the texture cache and were forwarded to the L2
cache, which in the worst case would continue to DRAM. A
high percentage of such cache misses would poorly impact
the code performance.

After switching to texture memory, the throughput in-
creases by 61.1 % compared to the naive implementation for
a problem size of 8192 X 8192 elements. This leads to a per-
formance improvement (kernel execution duration) of
39.2 %.

Using textures can greatly benefit the performance, how-
ever, the legacy texture API is cumbersome to use and main-
tain. A viable alternative, as also suggested by GPUscout,
would be using shared memory instead, which is exposed
in a more user-friendly way to CUDA developers. Multiple
efforts, such as [1, 4, 24] present the algorithms and explore
the benefits of using shared memory in stencil computations
on GPUs.

Following the recommendation of GPUscout to add the
__restrict__ keyword had very little effect, improving the
performance by only 0.3 %. This little performance gain can

SC-W 2023, November 12-17, 2023, Denver, CO, USA

be attributed, for example, to some hardware-based optimiza-
tions happening to the original kernel, however, a closer
analysis is needed in this case.

On the datatype conversion front, our tool points at six
I2F (integer to floating point) datatype conversions at their
respective source code line numbers. However, these conver-
sions are unavoidable due to the nature of the algorithm.

5.3 SGEMM Matrix Multiplication

A single float precision General Matrix Multiply (SGEMM)
kernel computes matrix-matrix operations of the form

C «— aAB+ fC

In this use-case, our starting point is a naive implementation,
where each GPU thread computes a dot product of a row
of matrix A and a column of matrix B, computing a single
element of C.

GPUscout analysis of the SGEMM kernel detects registers
that are read-only throughout the lifetime of the kernel, and
are not aliased, making them suitable to be marked with
__restrict__ and const keywords. To make the change,
the tool again provides the exact source code line numbers.
GPUscout’s second recommendation is to use shared mem-
ory. Again, the registers involved in multiple load and com-
putation operations are shown, including their potential
presence in a for-loop. The analysis also advises the user
to pay attention to the shared memory bank conflicts and
a higher number of long scoreboard and MIO throttle stalls
when adjusting the code to use shared memory.

Based on the recommendations, we modify the kernel to
use shared memory. Roughly, we load a tile of A and of B
from global memory to the shared memory of each block.
The computation then takes place on the shared memory,
accumulating the partial results for each tile of C.

Comparing the metrics to the baseline ones, the long score-
board stalls rise from 7.8 % to 30.6 % and MIO throttle stalls
from 0.03 % to 4.5 %, showcasing the effective warning sys-
tem of GPUscout. The increase in the MIO throttle stall is
associated with high utilization of the MIO pipeline due
to shared memory instructions. However, the measured in-
crease is not enough to cause a significant performance drop.
For a matrix size of 10240x10240, the total kernel runtime
improves by a factor of 54x compared to the baseline.

Next, we analyze the new shared memory kernel, and it
newly recommends a vectorized load optimization. There-
fore, we further modify the kernel to use vectorized 128-
bit-aligned (<float4>) loads. GPUscout warns of a rise in
register pressure from using 25 registers (original) to 72 (vec-
torized), hence reducing the overall occupancy. This opti-
mization yields an additional performance improvement
of 8.5 % for the matrix size used.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Tool overhead (SGEMM)

30

BN Warp Stalls —@— Overhead
350 4 Metric Analysis
SASS Analysis - 25
300 H
F 20
250 +
n el
5}
< 200 A -15 =
| o
=
150 o ©
- 10
100 A
-5
50
0 — — —__ 0

T T T 7
1024 2048 4096 6144 8192
Array size (n)

Figure 6. GPUscout measurement overhead

5.4 Performance Analysis

As the analysis of kernels with GPUscout needs to utilize the
device (GPU) for some time, we provide basic information
about the overhead it comes with. As described in Section 3,
there are three major tasks when analyzing a kernel - the
static SASS Analysis, warp stall sampling, and collecting
the performance metrics. Each of these components in the
workflow adds to the total overhead of GPUscout.

Figure 6 presents the time needed for analysis of the
SGEMM kernel from Section 5.3 for different matrix sizes.
Each of the three pillars is presented separately. We can
see that the collection of metrics through NVIDIA Nsight
Compute is the most prominent contributor to the tool per-
formance overhead, especially for larger problem sizes. The
overhead is proportional to the sampling frequency and the
number of metrics collected. For this reason, the number of
metrics is kept as low as possible. The time spent with the PC
Stall Sampling analysis also increases with the problem size,
although being significantly less compared to the metrics
collection. On the other hand, the SASS analysis is indepen-
dent of the kernel execution duration. Instead, it depends
on the number and complexity of bottlenecks inspected by
GPUscout and the size of the SASS files being analyzed. As
a result, this value remains relatively constant, making it a
dominant factor for short kernels, but negligible otherwise.

Figure 6 presents the overhead of GPUscout compared to
the bare kernel execution time. As the array size increases,
the overhead rises too, reaching a factor of 28x for a matrix
size 8192x8192. This is caused by the rapid rise in metric col-
lection duration using Nsight Compute, which overshadows
the contribution from the other sections of GPUscout.

To avoid the overheads, the --dry-run option saves time
and resources by skipping the expensive metric collection
section of the tool, as presented in Section 3.1.

Sen, et al.

6 Related Work

Performance analysis and optimization tools are integral
instruments in the development of GPU applications. Nowa-
days, there is a rich ecosystem of tools that assist developers
in adapting and optimizing their GPU applications. Some of
the tools are vendor-provided and hence tied to a particular
GPU platform, while others are not. Some tools are commer-
cial, while others are open-source. As adding GPU support
in performance analysis tools is a recent development, the
support for various GPU features varies considerably.

NVIDIA’s proprietary Nsight suite offers comprehensive
profiling and optimization details. Nsight Systems and Nsight
Compute are two tools dividing the workflow into system-
level workload overview and CUDA kernel-level profiling.
NVIDIA Nsight Compute (ncu) [21] is an interactive cross-
platform low-level kernel profiler for CUDA programs. It
provides a detailed performance overview via a user interface
and/or a command line interface (CLI) by sampling metrics
from the kernel. These metrics only provide information at a
kernel-level granularity, hence do not provide details about
particular code segments.

Rice University’s HPCToolkit Performance Tool [25] is
capable of registering callbacks to monitor asynchronous
GPU operations using the NVIDIA CUPTI Activity API. Ad-
ditionally, it supports coarse-grained and fine-grained pro-
filing of GPU activities. HPCToolkit comes with a slightly
larger overhead than nvprof because, unlike nvprof, HPC-
Toolkit gathers CPU call stack data on each GPU profiling
pass as well. Unfortunately, there has not been much effort
invested in improving the tool’s measurement overhead [25].
GPA [26], a similar performance advisor for NVIDIA GPUs,
uses PC Sampling and dynamic backward slicing to detect
the stall reasons. However, unlike GPUscout, it lacks metrics
data to understand the influence of the GPU hardware.

DrGPU [7], a top-down GPU profiler, utilizes NVIDIA
Nsight Compute to collect the required hardware metrics
and builds an analysis-tree with rich performance insights.
This helps DrGPU to show memory-access related perfor-
mance bottlenecks. In contrast to our tool, it misses ingesting
CUDA SASS code information and therefore does not provide
actionable optimization advice at an instruction-level.

TAUcuda measurement library [14] enables capturing
CUDA events asynchronously in profile and trace forms
that provide static and dynamic performance measurement
and analysis of GPU kernels. Static analysis involves disas-
sembling CUDA binary files to observe instruction mixes and
source line information. The dynamic analysis uses CUPTI
source-code locator information and metrics for hardware
counter sampling [12]. Currently, it only supports default
counters, like occupancy %, registers per thread, etc.
With GPUscout, we employ a larger range of metrics to
provide a more detailed and comprehensive analysis of the
kernel performance. Moreover, the design of the TauCUDA

GPUscout: Locating Data Movement-related Bottlenecks on GPUs

package is based on an experimental Linux CUDA driver
from NVIDIA. As a result, the practical use of the tool de-
pends heavily on NVIDIA’s tools support in future Linux
production systems [13].

Score-P measurement infrastructure [8] is a scalable suite
for profiling and event tracing of HPC applications. It is
primarily an instrumentation-based tool that is limited to
basic functionality on GPUs. It has connections to other
popular tools like Scalasca [6], Vampir [15], and TAU. It
enables recording CUDA function calls and GPU events with
the CUPTI API. Although GPUscout adopts the use of CUPTI
PCSampling API too, in addition, we correlate the stalls to the
inefficient regions of source code and focus on analyzing the
SASS code as well. This helps to derive several optimization
recommendations for tuning the kernel performance.

The main added value of GPUscout, compared to the
above-mentioned tools, is offering a systematic approach
to decipher the CUDA binary code and analyze patterns
of data movements between the cores and the GPU mem-
ory. This, combined with PC stalls and performance metrics,
enables detecting the opportunities for optimizations that
would otherwise be difficult to foresee merely at a source
code level.

7 Conclusion and Future Work

Due to the complex memory architecture and programming
model of (NVIDIA) GPUs, optimizing workloads performed
on GPUs in HPC applications is a challenging task. To help
the developers with this task, GPU profilers and performance
optimization tools were created. Although they can provide
lots of information about kernel behavior, including metrics,
aggregated sample values, etc., it remains very difficult to
interpret the provided information to identify the root cause
of potential problems and locate these directly in the source
code.

To address this gap, in this paper, we introduced GPUscout,
which provides a framework for a comprehensive analysis
of NVIDIA GPU kernels and combines static analysis with
measurement-based data to provide additional context un-
veiling the performance and behavior of the kernel. The
focus of GPUscout is to provide precise and useful informa-
tion, hence the problem description and source code line
number are always attached. The analysis of GPUscout con-
sists of three individual parts — the analysis of the SASS code,
collection of warp stall sample aggregates, and collection of
kernel-wide metrics — that are linked together to provide the
needed information to the user.

We highlighted three use-cases in which we utilized GPUs-
cout to examine various kernels. It presented several opti-
mization suggestions. We implemented multiple of them and
saw significant performance improvements in the majority
of cases. The suggested and implemented optimizations in-
cluded using shared or texture memory, vectorized loads, or

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Source Code

__global__
void bodyForce(Body *p, float dt, int n) {
int i = blockDim.x * blockldx.x +

threadldx.x;
Modified code
{ float dz = p[j].z - plil.Z;] A
i Original code
Highlight float invDist3 = invDist * invDist * invDist; A
Fx +=dx * invDist3; H

SASS line |
and -
source code!
line :

SASS Instructions Metrips ‘Comparison

/*0190*/ LDG.E.SYS R15, [R4+0x4] ;

| LDG.E.SYS R19, [Ra+0x1c] ; | - 1
T IMC Miss original: 0.2
IMC Miss modified: 8.3

/01e0* LDG.E.SYS R23, [R4+0x34] ;
110210* LOG.E.SYS R29, [RA+0x4c] ;
1<0250* IADD3 R19, R27, -0x4, RZ ;

< g e Y frmrend > Source
; Destination :

v .
Global memory access location:

v v :
Warp stalls #LDG instructions: 4

distribution Highlight all opcodes ! 0x4 - Oxle - 0x34 - Ox4c
[O relevant for the analysis : : " : :
(stacked bar graph) v

Next compute instruction - (Register R9) not read-only
170250/ IADD3 R9, R27, -0x4, RZ ;

Figure 7. Schematic sketch of visualizing the data collected

the __restrict__ keyword. These use-cases demonstrate
the usefulness of GPUscout and present how the analysis en-
gines come together to help interpret the kernel performance
data and improve the code.

Future Work. In the future, we plan to add a more visual
way of presenting the findings and relevant data in an easily
understandable way. A sketch of the planned frontend is
illustrated in Figure 7. The main window can be divided
broadly into the ’Source Code’ view (presenting the CUDA
code) and the "SASS Instructions’ view (presenting the SASS
instructions). These windows can easily be correlated with
each other through the code line/SASS instruction mapping.
Another section called ’Metrics Comparison’ will focus on
the data movement in the GPU hierarchy. It will point at
metrics to observe after modifying the code, and hence, a
new-versus-old comparison of the obtained metric values
will be available here, showing how selected metrics rise/fall
due to the change. Such a simple, yet powerful interactive
visualization can move the analysis provided by GPUscout to
anew level by presenting the findings in a more user-friendly
and interactive way.

Additionally, due to the modular nature of GPUscout, more
SASS analyses can be added very easily, detecting much more
potential optimization scenarios than now.

Finally, we plan to examine options of injecting PTX in-
structions around specific code regions of interest to collect
further metrics characterizing memory bottlenecks.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Acknowledgments

The DEEP-SEA project has received funding from the Euro-
pean Union’s Horizon 2020/EuroHPC research and innova-
tion programme under grant agreement No 955606. National
contributions from the involved state members match the
EuroHPC funding.

Part of the performance results have been obtained on
systems in the test environment BEAST (Bavarian Energy
Architecture & Software Testbed) at the Leibniz Supercom-
puting Centre.

References

[1] Ronan Amorim, Gundolf Haase, Manfred Liebmann, and Rodrigo San-
tos. 2009. Comparing CUDA and OpenGL implementations for a Jacobi
iteration, In 2009 International Conference on High Performance Com-
puting and Simulation. Proceedings of the 2009 International Conference
on High Performance Computing and Simulation, HPCS 2009, 22 - 32.
https://doi.org/10.1109/HPCSIM.2009.5192847

[2] Lorenz Braun and Holger Froning. 2019. CUDA Flux: A Lightweight

Instruction Profiler for CUDA Applications. In 2019 IEEE/ACM Perfor-

mance Modeling, Benchmarking and Simulation of High Performance

Computer Systems (PMBS). 73-81. https://doi.org/10.1109/PMBS49563.

2019.00014

S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. 2000. A

Portable Programming Interface for Performance Evaluation on Mod-

ern Processors. Int. J. High Perform. Comput. Appl. 14, 3 (aug 2000),

189-204. https://doi.org/10.1177/109434200001400303

José Cecilia, José Garcia, and Manuel Ujaldon. 2010. CUDA 2D Stencil

Computations for the Jacobi Method, In Proceedings of the 10th Inter-

national Conference on Applied Parallel and Scientific Computing -

Volume Part I (Reykjavik, Iceland). Para 2010 - State of the Art in Sci-

entific and Parallel Computing I, 173-183. https://doi.org/10.1007/978-

3-642-28151-8_17

Gautam Chakrabarti, Vinod Grover, Bastiaan Aarts, Xiangyun Kong,

Manjunath Kudlur, Yuan Lin, Jaydeep Marathe, Mike Murphy, and

Jian-Zhong Wang. 2012. CUDA: Compiling and optimizing for a

GPU platform. Procedia Computer Science 9 (12 2012), 1910-1919.

https://doi.org/10.1016/j.procs.2012.04.209

[6] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Abraham, Daniel

Becker, and Bernd Mohr. 2010. The Scalasca Performance Toolset

Architecture. Concurr. Comput.: Pract. Exper. 22, 6 (apr 2010), 702-719.

Yueming Hao, Nikhil Jain, Rob Van der Wijngaart, Nirmal Saxena,

Yuanbo Fan, and Xu Liu. 2023. DrGPU: A Top-Down Profiler for

GPU Applications. In Proceedings of the 2023 ACM/SPEC International

Conference on Performance Engineering (Coimbra, Portugal) (ICPE °23).

Association for Computing Machinery, New York, NY, USA, 43-53.

https://doi.org/10.1145/3578244.3583736

[8] Andreas Kniipfer, Christian Feld, Dieter Mey, Scott Biersdorff, Kai Di-

ethelm, Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel

Lorenz, Allen Malony, Wolfgang Nagel, Yury Oleynik, Peter Philip-

pen, Pavel Saviankou, Dirk Schmidl, Sameer Shende, Ronny Tschiiter,

Michael Wagner, Bert Wesarg, and Felix Wolf. 2012. Score-P: A

Joint Performance Measurement Run-Time Infrastructure for Periscope,

Scalasca, TAU, and Vampir. Springer, Berlin, Heidelberg, 79-91.

https://doi.org/10.1007/978-3-642-31476-6_7

Peter Kogge and John Shalf. 2013. Exascale Computing Trends: Ad-

justing to the New Normal for Computer Architecture. Computing

in Science & Engineering 15 (11 2013), 16-26. https://doi.org/10.1109/

MCSE.2013.95

Elias Konstantinidis. 2015. mixbench. https://github.com/ekondis/

mixbench,. commit: 8a3585e3cf32a062192396cbc560afe6abb566d0.

—
w
[t

—
S
flaar?

—
wu
=

—
~
—

—
O
—

(10

[t

Sen, et al.

[11] Elias Konstantinidis and Yiannis Cotronis. 2017. A quantitative
roofline model for GPU kernel performance estimation using micro-
benchmarks and hardware metric profiling. J. Parallel and Distrib. Com-
put. 107 (04 2017), 37-56. https://doi.org/10.1016/j.jpdc.2017.04.002

[12] Robert V. Lim, Allen D. Malony, Boyana Norris, and Nicholas Chaimov.
2015. Identifying Optimization Opportunities Within Kernel Execution
in GPU Codes. In Euro-Par Workshops.

[13] Allen D. Malony, Scott Biersdorff, Wyatt Spear, and Shangkar
Mayanglambam. 2010. An Experimental Approach to Performance
Measurement of Heterogeneous Parallel Applications Using CUDA.
In Proceedings of the 24th ACM International Conference on Supercom-
puting (Tsukuba, Ibaraki, Japan) (ICS ’10). Association for Computing
Machinery, New York, NY, USA, 127-136. https://doi.org/10.1145/
1810085.1810105

[14] Shangkar Mayanglambam, Allen D. Malony, and Matthew J. Sottile.
2009. Performance Measurement of Applications with GPU Accelera-
tion using CUDA. In International Conference on Parallel Computing.

[15] Wolfgang E. Nagel, Alfred Arnold, Michael Weber, Hans-Christian
Hoppe, and Karl Solchenbach. 1996. VAMPIR: Visualization and Anal-
ysis of MPI Resources. Supercomputer 63, Vol. XII, 1 (1996), 69-380.
https://juser.fz-juelich.de/record/189233

[16] NVIDIA. 2020. CUDA, release: 10.2.89. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/. Accessed: 2023-04-15.

[17] NVIDIA. 2022. CUDA Profiling Tools Interface (CUPTI), release: 11.8.0.
https://docs.nvidia.com/cuda/cupti/index.html. Accessed: 2023-04-15.

[18] NVIDIA. 2023. CUDA Binary Utilities, release: 12.0. https://docs.nvidia.
com/cuda/cuda-binary-utilities/. Accessed: 2023-04-15.

[19] NVIDIA. 2023. CUDA Profiler, release: 12.1. https://docs.nvidia.com/
cuda/pdf/CUDA_Profiler_Users_Guide.pdf. Accessed: 2023-04-15.

[20] NVIDIA. 2023. Kernel Profiling Guide, release: 2022.4.1. https://docs.
nvidia.com/nsight-compute/ProfilingGuide/index.html. Accessed:
2023-04-15.

[21] NVIDIA. 2023. Nsight Compute CLI, release: 2022.4.1. https://docs.
nvidia.com/nsight-compute/NsightComputeCli/index.html. Accessed:
2023-04-15.

[22] Huabin Ruan, Xiaomeng Huang, Haohuan Fu, and Guangwen Yang.
2013. Jacobi Solver: A Fast FPGA-based Engine System for Jacobi
Method. Research Journal of Applied Sciences, Engineering and Tech-
nology 6 (12 2013), 4459-4463. https://doi.org/10.19026/rjaset.6.3452

[23] Sameer S. Shende and Allen D. Malony. 2006. The Tau Parallel Perfor-
mance System. Int. J. High Perform. Comput. Appl. 20, 2 (May 2006),
287-311. https://doi.org/10.1177/1094342006064482

[24] Siham Tabik, Maurice Peemen, Nicolas Guil, and Henk Corporaal.
2015. Demystifying the 16 x 16 thread-block for stencils on the GPU.
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3591. Concurrency
and Computation: Practice and Experience 27, 18 (2015), 5557-5573.
https://doi.org/10.1002/cpe.3591 Accessed: 2023-04-15.

[25] Keren Zhou, Laksono Adhianto, Jonathon Anderson, Aaron Cherian,
Dejan Grubisic, Mark Krentel, Yumeng Liu, Xiaozhu Meng, and
John Mellor-Crummey. 2021. Measurement and Analysis of GPU-
Accelerated Applications with HPCToolkit. Parallel Comput. 108, C
(dec 2021), 12 pages. https://doi.org/10.1016/j.parc0.2021.102837

[26] Keren Zhou, Xiaozhu Meng, Ryuichi Sai, and John Mellor-Crummey.
2021. GPA: A GPU Performance Advisor Based on Instruction Sam-
pling. In Proceedings of the 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (Virtual Event, Republic of Korea)
(CGO ’21). IEEE Press, 115-125. https://doi.org/10.1109/CGO51591.
20219370339

Received 19 Aug 2023; revised 30 Sep 2023; accepted 30 Sep 2023

https://doi.org/10.1109/HPCSIM.2009.5192847
https://doi.org/10.1109/PMBS49563.2019.00014
https://doi.org/10.1109/PMBS49563.2019.00014
https://doi.org/10.1177/109434200001400303
https://doi.org/10.1007/978-3-642-28151-8_17
https://doi.org/10.1007/978-3-642-28151-8_17
https://doi.org/10.1016/j.procs.2012.04.209
https://doi.org/10.1145/3578244.3583736
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1109/MCSE.2013.95
https://doi.org/10.1109/MCSE.2013.95
https://github.com/ekondis/mixbench
https://github.com/ekondis/mixbench
https://doi.org/10.1016/j.jpdc.2017.04.002
https://doi.org/10.1145/1810085.1810105
https://doi.org/10.1145/1810085.1810105
https://juser.fz-juelich.de/record/189233
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cupti/index.html
https://docs.nvidia.com/cuda/cuda-binary-utilities/
https://docs.nvidia.com/cuda/cuda-binary-utilities/
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://doi.org/10.19026/rjaset.6.3452
https://doi.org/10.1177/1094342006064482
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3591
https://doi.org/10.1002/cpe.3591
https://doi.org/10.1016/j.parco.2021.102837
https://doi.org/10.1109/CGO51591.2021.9370339
https://doi.org/10.1109/CGO51591.2021.9370339

	Abstract
	1 Introduction
	2 Background
	2.1 PTX and SASS
	2.2 CUPTI PC Sampling API
	2.3 Nsight Compute Metrics

	3 Design of GPUscout
	3.1 Workflow
	3.2 Presented Results

	4 Bottleneck Detection
	4.1 Use Vectorized Loads
	4.2 Register Spilling
	4.3 Use Shared Memory
	4.4 Use Shared Atomics
	4.5 Use Read-only Cache
	4.6 Use Texture Memory
	4.7 Datatype Conversions

	5 Case Studies
	5.1 Mixbench
	5.2 Heat Transfer Simulation
	5.3 SGEMM Matrix Multiplication
	5.4 Performance Analysis

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

