

Master Thesis: Efficient Neural Networks Strategy for Hyperautoencoders on Earth Observation images

On one hand, Earth Observation satellites are hardware-constrained platforms with minimal onboard memory and restricted downlink bandwidth. On the other hand, learned Data Compression, leveraging autoencoder-based architectures, has proven to be a state-of-the-art methodology on the ground. This thesis aims to investigate network compression methods that allow for the use of Deep Learning architectures in hardware-constrained environments such as spaceborne satellites.

Tasks:

- Get familiar with Binary Neural Networks and AdderNets network compression
- Apply these methods to the provided Hyper-autoencoder architectures and datasets
- Evaluate the effectiveness of these methods through a set of metrics
- Identify experiments' bottlenecks and propose potential solutions

Recommended knowledge and experience:

- Python programming experience
- Experience with Git and working with remote clusters
- Familiarity with ML libraries such as PyTorch Lightning, W&B, or Hydra is encouraged

Benefits:

- Involve in the academic environment of the chair of Computer Architecture and Parallel Systems
- Researching rising research topics such as Network Compression
- Getting system performance perspectives on AI application
- Become familiar with modern ML tools and libraries

Application:

If you are interested in this topic, email Cedric Leonard or Dai Liu (find the contact details below).

Technische Universität München

Chair of Computer Architecture and Parallel Systems (Prof. Schulz) cedric.leonard(at)dlr.de dai.liu(at)tum.de www.caps.in.tum.de