
Author’s Preprint: To Appear in IEEE International Conference on Computer Design 2024

Reinforcement Learning-driven Co-scheduling and
Diverse Resource Assignments on NUMA Systems

Urvij Saroliya, Eishi Arima, Dai Liu, and Martin Schulz
Technical University of Munich, Garching, Germany

{urvij.saroliya, eishi.arima, dai.liu, martin.w.j.schulz}@tum.de

Abstract—As modern HPC systems are typically composed
of fat and rich compute nodes, it is usually difficult to fully
utilize all node resources with a single application. Co-scheduling,
i.e., co-executing multiple complementary applications (or jobs)
on the same node in a space sharing manner, is a promising
solution and thus has been widely studied in the past decade.
As one major drawback of co-scheduling is that it induces
the interference effects among co-located applications due to
contention among shared resources, the industry has started
to support several resource/traffic partitioning features, e.g., in
shared caches or memory controllers, on modern commercial
processors. Recent studies proposed effective approaches to make
use of these advanced features, however, the interactions between
these features and (1) job scheduling decisions as well as (2)
NUMA (Non-Uniform Memory Access) effects were generally
overlooked. This paper explicitly targets these two missing pieces
and comprehensively harmonizes the following decisions using
reinforcement learning: (a) job selections for co-execution from
a given job queue; and (b) diverse resource assignments to
co-executed jobs, leveraging emerging hardware partitioning
features, while taking NUMA-awareness into account. Our eval-
uation result demonstrates that our approach can improve the
total system throughput by up to 78.1% over time sharing-based
naive scheduling.

Index Terms—NUMA Systems, Co-Scheduling, Resource Man-
agement, Reinforcement Learning

I. INTRODUCTION

Ever since the end of Dennard scaling [1], the industry has
continued to increase on-chip core counts. As a consequence,
many-core processors have become common in HPC systems
and optimizing the performance on such architectures has
become essential for achieving performance at scale. In order
to further enhance the node-level computational throughput
and memory bandwidth, each compute node in those sys-
tems is typically composed of multiple processor sockets,
which naturally makes them NUMA (Non-Uniform Memory
Access) based designs [2]. Such a NUMA-based compute
node is dividable into multiple NUMA domains, which are
connected via an intra-node interconnect, and each NUMA
domain consists of processor cores and dedicated memory
resources. On such systems, localizing memory accesses by
optimizing core/memory assignment to the running program
is indispensable as accessing remote memories that belong to
other domains typically incurs considerable overhead [3]–[12].

Meanwhile, as compute nodes in HPC systems are be-
coming fatter and richer, it is getting harder to fully utilize
all node resources by a single application. On one hand,
memory intensive applications typically need only a small

fraction of on-node compute resources, while on the other
hand, compute intensive applications can waste the plentiful
bandwidth resources the node can offer.

One of the most promising solutions to mitigate the resource
waste is co-scheduling, i.e., co-executing multiple applications
(or jobs) simultaneously on the same node in a space sharing
manner, which has been widely studied for servers and HPC
systems [13]–[17]. By co-locating different types of applica-
tions that require complementary resources, resource waste
can be significantly reduced. The major drawback is that it
induces interference effects among co-executing applications
due to contention for shared resources (e.g., shared caches
and memory controllers). Therefore, industry has started to
support new hardware features on recent commercial mi-
croprocessors that enable a partitioning of resources/traffic.
Prominent examples are cache/bandwidth partitioning features
(e.g., Intel’s CAT/MBA [18]). Recent studies have shown
the effectiveness of those partitioning features and proposed
useful methodologies to optimize them [19]–[24]. However,
the interactions between cache/bandwidth partitioning setups
and (1) NUMA effects as well as (2) job scheduling decisions,
i.e., selections of jobs from a job queue to co-locate them, were
so far not covered by existing studies.

In this paper, we explicitly target NUMA-based systems
that support such emerging resource partitioning features,
and we comprehensively co-optimize (1) co-run job selections
from a given job queue and (2) diverse resource assignments,
including NUMA-aware core/memory assignments and shared
resource partitioning based on the new hardware features.
For this we apply a reinforcement learning-based holistic
and systematic approach to harmonize those different types
of hardware/software knobs. More specifically, we make the
following major contributions:

1) We first demonstrate the correlation between core/memory
mappings and cache/bandwidth partitioning setups.

2) We present the considerable impact of co-run job pair
selections on performance and partitioning decisions.

3) Simultaneously targeting both the co-run job selections and
the NUMA-aware resource assignments, we formulate the
problem in a concrete mathematical form.

4) We provide a reinforcement learning-based holistic and
systematic approach to solve the optimization problem.

5) We finally quantify the effectiveness of our approach,
resulting in up to 78.1% system performance improvement.

Author’s Preprint: To Appear in IEEE International Conference on Computer Design 2024

II. BACKGROUND AND RELATED WORK

A. NUMA Systems and Optimizations
NUMA-based systems exist over the past few decades, and

thus the data mapping as well as process/thread scheduling
optimizations on them have been well studied. The IBM ACE
multiprocessor workstation built in the 1980s was based on a
NUMA architecture, and several page placement policies were
explored for this particular machine [3]. Following this work,
Bolosky et al. applied trace-based analyses and pointed that
the optimal paging policy depends on the architectural param-
eters [4]. Li et al. then proposed a locality-based scheduling
technique for parallel loops on NUMA [5]. Since the cache
coherent NUMA (or CC-NUMA) architecture became domi-
nating in the 1990s, Verghese et al. proposed an OS-assisted
technique to improve the data locality for CC-NUMA [6].
After the end of Dennard scaling [1] in the mid 2000s, multi-
/many-core architectures became dominant in the market, and
the core count has been further pushed with using multiple
sockets for high-end systems, which induced NUMA effects
even within a node [8], [9]. Given this architectural trend,
some studies targeted multi-threaded programs and attempted
to minimize the thread-to-thread and thread-to-memory over-
heads for on-node NUMA optimizations [10], [11]. Our work
builds on this literature, and combines the NUMA-aware
thread/data optimization with the emerging shared resource
control features. It provides a holistic solution that includes
co-scheduling job set selections using reinforcement learning.

B. Co-scheduling and Resource Partitioning
Since multicore processors appeared in the market, vari-

ous co-scheduling techniques have been proposed for servers
and HPC systems. Bhadauria et al. explored the feasibility
of co-scheduling and proposed a greedy-based scheduling
policy [13]. Sasaki et al. proposed a scalability-based re-
source allocation approach for co-scheduled multi-threaded
programs [14]. Breitbart et al. developed a resource monitoring
tool for co-scheduling HPC applications [15] and provided
a memory intensity-based co-scheduling policy [16]. Zhu et
al. rather targeted CPU-GPU heterogeneous processors and
proposed a co-scheduling approach suitable for them [17].
Saba et al. coordinated co-scheduling, resource partitioning,
and power budgeting across CPUs and GPUs [25]. There exist
several GPU-focused co-scheduling and resource partitioning
studies [26], [27]. Álvarez et al. implemented a library to re-
alize a system-wide co-scheduling for task-based applications
on HPC systems [28]. Zou et al. explored the combination of
co-scheduling and power capping for clusters [29]. These co-
scheduling studies focused on job selections and/or resource
partitioning, however, did not target the combination of mem-
ory resource partitioning and NUMA effects.

During co-scheduling, last level caches and underlying
memory controllers are usually shared by multiple dif-
ferent cores on modern microprocessors. Hence, partition-
ing/isolating shared caches as well as main memory band-
width traffics, while optimizing the assignments in accor-
dance with the demands, is an effective approach. Qureshi

et al. first proposed the concept of cache partitioning with
an associated microarchitectural design and quantified the
effectiveness via simulations [30]. Rafique et al. then devised
a software/hardware mechanism to control memory bandwidth
assignments among co-scheduled applications [31]. Driven
by those pioneering studies, the industry has started sup-
porting cache/bandwidth partitioning features in commercial
processors [18]. Several recent studies explored the benefits
of these new partitioning features and also proposed several
useful techniques to optimize them [19]–[24]. Some studies
focused only on the cache partitioning feature [19], [20], while
others explored only the memory bandwidth partitioning [21],
[22]. Park et al. first evaluated the combination of these two
features [23], and then Chen et al. applied a machine learning
approach to optimizing the setups of those hardware fea-
tures [24]. Our work also covers the combination of those two
knobs, however ours newly introduces the following aspects in
the optimization: (1) NUMA-aware resource assignments; and
(2) job set selections to co-schedule from a given job queue.

III. OBSERVATIONAL ANALYSIS

A. Target Systems

We target HPC systems that consist of multiple NUMA
domains and support cache/bandwidth partitioning features
controllable from software. As an example, Fig. 1 depicts the
system we use in our evaluations. Note that the details of our
evaluation environment are presented in §V. For the cache
partitioning, we assume caches are partitioned and assigned
to co-located programs at the granularity of cache ways. As
for bandwidth partitioning, we assume the memory controllers
have a function to isolate and prioritize memory access traffic
from each co-running program by enabling and enforcing a
limit of memory bandwidth utilization. These hardware fea-
tures are widely supported in recent server-class commercial
microprocessors and are controllable via software, such as the
rdtset package [18]. On such a system, we co-schedule
multi-threaded or multi-processed jobs/applications and, at the
same time, decide the resource assignments, including cores,
cache ways, and bandwidth, to the co-scheduled jobs when
launching them.

B. Core/Memory Affinity Policies: Compact v.s. Distributed

We consider two different types of core mapping affinities
for NUMA-based systems: compact and distributed. In the
former, cores are preferably selected from the same NUMA
domain, while in the latter, they are chosen from different
NUMA domains in a round-robin manner. For both options,
we consider different memory mapping policies, including first
touch [3], [6], round robin, etc., so that memory accesses are
optimized for the given co-run jobs and for the selected core
mapping. In Fig. 1, the distributed policy is used for J3, but the
compact policy is applied to the others. The compact option
is typically preferable when the NUMA interconnect becomes

Author’s Preprint: To Appear in IEEE International Conference on Computer Design 2024

NUMA1

BW
Assign.

Cache
Assign.

LLC

Mem Ctlr

Cores

Core
Assign.

Mem.
Assign.

Memories

Way

NUMA2

LLC

Mem Ctlr

Cores

Memories

Interconnect
Core

rdtset

rdtset

numactl

numactl

Job Set: J3, J4, J7

J4

J3

J7

J3

Fig. 1: An Example of Our Target Systems

0.5

1.0

1.5

Th
ro

ug
hp

ut

ocean_cp :
water_spatial

MG : EP FT : fmm water_spatial :
UA

*

**

*

0.0

Compact w/o
Partitioning

Distributed w/o
Partitioning

Compact w/
Partitioning

Distributed w/
Partitioning

2.0

EP : fmm

*

Fig. 2: Throughput Comparison among Dif-
ferent Core Affinity Policies

O
pt

im
al

 A
ss

ig
nm

en
t

[%
]

Co
re

s

Ca
ch

e

BW

50 %

ocean_cp :
water_spatial

MG : EP FT : fmm water_spatial :
UA

EP : fmm

Co
re

s

Ca
ch

e

BW

Co
re

s

Ca
ch

e

BW

Co
re

s

Ca
ch

e

BW

Co
re

s

Ca
ch

e

BW

Job A Job BCompact Allocation (Job A : Job B) Shared

Co
re

s

Ca
ch

e

BW
ocean_cp :

water_spatial
MG : EP FT : fmm water_spatial :

UA
EP : fmm

Co
re

s

Ca
ch

e

BW

Co
re

s

Ca
ch

e

BW

Co
re

s

Ca
ch

e

BW

Co
re

s

Ca
ch

e

BW

Job A Job BDistributed Allocation (Job A : Job B) Shared

O
pt

im
al

 A
ss

ig
nm

en
t

[%
]

50 %

Fig. 3: Optimal Resource Allocations for Dif-
ferent Affinity Policies (Top: ”Compact w/ Parti-
tioning”, Bottom: ”Distributed w/ Partitioning”)

3:21 6:18 12:12 18:6 21:3
Core Allocation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Th
ro

ug
hp

ut

MG : EP
compact w/o partitioning
distributed w/o partitioning
compact w/ partitioning
distributed w/ partitioning

3:21 6:18 12:12 18:6 21:3
Core Allocation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Th
ro

ug
hp

ut

ocean_cp : water_spatial
compact w/o partitioning
distributed w/o partitioning
compact w/ partitioning
distributed w/ partitioning

Fig. 4: Throughput v.s. Core Allocation
for Different Co-run Pairs (Top: MG:EP,
Bottom: ocean_cp:water_spatial)

the performance bottleneck1. This can be the case when a
running job induces frequent inter-core communications or
intensive remote memory accesses, e.g., due to irregular and
sparse memory references. The distributed option, on the
other hand, is suitable when the memory references are rather
regular or localized within each NUMA domain so that more
cache capacity and memory bandwidth is potentially available
for the job (because these resources are also distributed). Once
the set of co-scheduling jobs and the core/memory mappings
are given, the cache and bandwidth are partitioned in order
to mitigate the interference effects among co-located jobs on
each NUMA domain.

C. Observations on a NUMA System

Fig. 2 compares throughput among different core affinity
policies using different job pairs. The horizontal axis depicts
different policies per job pair, while the vertical axis indi-
cates relative throughput normalized to that of time-shared
scheduling with using exclusive solo runs. We test both the
compact and the distributed core affinity with and without
using the cache/bandwidth partitioning features. Note, the best
policy out of four is marked with ”*” for each job mix.
When the cache/bandwidth partitioning features are enabled,
we select the best setup in a exhaustive manner, i.e., executing
the given job pair repetitively while testing all the possible
setups and picking the best one that maximizes throughput.
The numbers of cores assigned to co-scheduled applications
are also optimized in the exhaustive search procedure as well,

1NUMA interconnects usually offer less bandwidth than the total memory
bandwidth aggregated across different NUMA domains. Further, they typically
do not support any features to control quality of services, and thus affinity
optimizations are the only way to mitigate their bottlenecks and contention.

and, at the same time, the memory mapping is selected from
three different options (presented in §V) so that the co-run
throughput is maximized. The exact search space with respect
to the hardware assignments is presented in §V.

As shown in the figure, the emerging cache/bandwidth
partitioning features are very effective for several job mixes
(e.g., ocean_cp:water_spatial and FT:fmm). This is
because some of these programs are memory intensive or
cache friendly, and thus isolating/partitioning these memory
resources significantly mitigates the interference effects on
them, which in turn improves the throughput considerably
(when the resource assignments are configured accordingly).
However, these new partitioning features are ineffective for
other workloads, but rather the core affinity setup matters
for them (e.g., MG:EP). One major reason is that the inter-
NUMA communications can also be a bottleneck, for instance
due to interference effects on the interconnect caused by
irregular memory accesses. Thus, depending on the selected
jobs to be co-located, we need to carefully choose the affinity
policy from the compact or distributed options. At the same
time, we also need to carefully select the job pair as well
— for instance, mixing water_spatial with ocean_cp
outperforms doing so with UA as shown in the figure.

Next, Fig. 3 illustrates the breakdown of resource allocations
for different application pairs when they are optimized for
compact or distributed core affinity options, top or bottom
graph respectively. The X-axis lists different resources per job
mix, whereas the Y-axis accumulates the resource allocation
rates. For the cache and bandwidth partitioning, we apply
also the shared option where resources can be used by both
co-scheduled programs. As shown in the figures, the core

Author’s Preprint: To Appear in IEEE International Conference on Computer Design 2024

Resource Assignments

Job Queue: Q

Window Size: W

Job Concurrency: jsi,j Cmax

Scheduling Attribute = {W, Cmax}

J8J7J6J5J4J2J1 J3

System State as a Strip
(rmax)

Time

C
o
R

u
n
T

im
e(
s 2

,
R

,
Q

)

Objective:

To Minimize the Height

J1 J8

J3 J4 J7

r7r4r3

Selection

Matrix S = = s1=[10000001]

R･si
T = jsi,jrj

1 0 0 0 0 0 0 1
0 0 1 1 0 0 1 0. . .

s1
s2. . .

sW

s2=[00110010]

. . .

R=[r1 r2 ... r8]

Co-Run Job Set Selections

r1 r8

Resource

J1 J2 J3 J4 J5 J6 J7 J8

0 0 0 0 0 0 0 0

isi = 1 = [11111111]
+

. . .

Fig. 5: Co-Scheduling and Resource Allocation as Strip Packing

affinity option (compact or distributed) can significantly affect
the decisions on the resource partitioning setups including
the core/cache/bandwidth partitioning. At the same time, the
job pair selection considerably affects the decisions on these
resource assignments as well, because optimal assignments
highly depend on the given job mix.

Finally, Fig. 4 demonstrates throughput as a function of
numbers of cores using the four different resource assignment
options when co-executing MG and EP (top) / ocean_cp and
water_spatial (bottom). In the figures, the horizontal axis
indicates the numbers of cores assigned to the co-scheduled
programs, while the vertical axis shows the relative throughput
normalized to that of time-shared scheduling with exclusive
solo runs. Here, when the cache/bandwidth partitioning fea-
tures are enabled, the best partitioning setup is selected for
the given core affinity policy based on the results of an
exhaustive search. As shown in the figures, the numbers of
cores assigned to given jobs that are co-executed significantly
affect the overall throughput, and, at the same time, the
impact on throughput also can depend on the given job mix,
the selected affinity policy (compact or distributed), and the
cache/bandwidth partitioning setups.

IV. OPTIMIZATION VIA REINFORCEMENT LEARNING

A. Problem Formulation

Fig. 5 depicts the scheduling and resource allocation prob-
lem we solve in this paper. We target the first W jobs in the
job queue (Q = {J1,J2, · · · ,JW}) for our co-scheduling and
resource allocation optimization. Each Ji is a vector that lists
parameters collected via profiling, in order to characterize the
features of the ith job. We then introduce a W × W binary
matrix (S) that consists of W row vectors, each of which
represents a set of jobs to co-locate — if an element (si,j)
is set to 1, we launch the associated job (jth one) in the
queue. Further, we utilize another matrix (R) that aggregates
a set of column vectors (R = [r1r2 · · · rw]) to describe the
resource assignments to the jobs. Here, ri is corresponding
to the ith job, and each element in the vector represents a
certain resource (core, memory, cache way, or bandwidth) in
one of the NUMA domains. All the parameters we use in this
optimization are listed in Table I.

The optimization problem is formulated as follows:

input Q = {J1,J2, · · · ,JW}, W, Cmax

output S = [s1
T s2

T · · · swT]T , R = [r1r2 · · · rw]

min
∑

1≤i≤W

CoRunTime(si,R,Q)

s.t. si,j ∈ {0, 1} (1 ≤ ∀i,∀j ≤ W)

R · siT =
∑

1≤j≤W

si,jrj ≤ rmax (1 ≤ ∀i ≤ W)

si · 1T =
∑

1≤j≤W

si,j ≤ Cmax (1 ≤ ∀i ≤ W)

1 · S =
∑

1≤i≤W

si = 1 (⇒ 1 · S · 1T = W)

The objective is to minimize the total co-execution run time,
which is equivalent to maximizing system throughput. The first
constraint restricts the elements of the job selection matrix
(S) to 0 (job not selected) or 1 (job selected). The second
constraint is the resource constraint, i.e., the sum of the
resource allocation vectors across the ith set of co-located
jobs (si,1r1, si,2r2, ...) must be less than or equal to the
limits denoted as rmax. The third constraint keeps the job
concurrency within Cmax, i.e., the number of selected job (i.e,
1s in the vector si) must be less than or equal to Cmax. The last
constraint states that the W jobs in the queue are scheduled in
a mutually exclusive and collectively exhaustive fashion, i.e.,
they are launched only once and thus in total W different jobs
are scheduled. Further, to limit the number of variants of S,
the vectors s1, s2, ... are sorted by the co-run effectiveness
(speedup over solo executions).

This optimization can be considered a variant of the well-
known strip packing problem [32]. In a strip packing problem,
multiple items (usually with rigid rectangular shapes) and a
strip are given, and the objective is to minimize the height
after filling the strip using all given items. In our problem, the
shapes of items can be changed depending on the resource
assignment setups (R), and also each item has multiple
dimensions. As the basic strip packing problem is known as
NP-hard [32], ours falls at least in the same category, given
that ours even has a higher degree of freedom in its decisions.

TABLE I: Definitions of Symbols/Functions

Symbol Remarks

Q The set of queuing jobs in the window: Q = {J1, · · · ,JW}
Ji The vector to list job feature parameters for ith job in the queue
W The window size of the queue

Cmax The maximum number of concurrently running jobs
S The matrix of co-scheduling decisions: S = [s1

T · · · swT]T

si The row vector to state ith set of co-locating jobs (si,j = 0or1)
R The matrix of resource assignment decisions: R = [r1 · · · rw]

ri
The resource allocation setup for ith job — each element

represents one of the resources in a certain NUMA domain

rmax
The resource constraint vector — each element represents the

limit of one of the resources in a certain NUMA domain
1 The row vector whose elements are all 1: 1 = [1 · · · 1]
Function Remarks

CoRunTime(si,
R,Q)

The total execution time when co-locating jobs selected
from Q and assigning resources based on si and R

Author’s Preprint: To Appear in IEEE International Conference on Computer Design 2024

Job Profiling

OFFLINE

PROFILING

Job Profiles

Repository

Action at

Reward rt

State st

OFFLINE TRAINING

RL Agent

RL Environment

NUMA System

Reward

Function
Partitioning

Features

Job Queue W, Cmax

J1 J2 JW-1 JW

J1

J2

JW-1

JW Model

Coefficients

Job Queue

NUMA System

Job Selection

Matrix (S)

+

Resource Assignment

Matrix (R)

W, Cmax

ONLINE OPTIMIZATION

RL Agent

Fig. 6: Our Reinforcement Learning-Based Solution

B. High-level Procedures

Fig. 6 presents the entire system architecture of our solution.
As depicted in the diagram, it comprises three distinct com-
ponents: (1) offline profiling, which involves the collection of
application profiles; (2) offline training, aimed at identifying
the coefficients of our agent; and (3) online optimization,
where the trained agent is deployed for decision-making
purposes.

To characterize jobs, we utilize a profile-based approach,
and thus we have an offline profiling as a component in our
solution. To perform application profiling, we utilize hardware
performance counters, and the exact counters used in our
evaluation are listed in Table III in §V. These profiles must
be collected in advance for all co-scheduling targets in both
the offline and online phases. We collect solo-run profiles for
all benchmark programs used in the offline training phase. We
conduct the solo-run profiling also for queuing jobs in the
online optimization phase if their profiles are not available.
More specifically, if the associated application profile is not
available for a job, it is excluded from the co-scheduling
targets, and such a job is executed with exclusively using
node resources while collecting the profile. If an application
is previously executed on the system and a profile is available,
it is included as a co-scheduling target2.

For the offline model training, we create a set of bench-
mark program mixes to co-schedule on the target NUMA
system in order to train our agent. For each program mix,
we continuously probe the co-run throughput while changing
the resource allocations, including core/memory assignments
and cache/bandwidth partitioning. This procedure is conducted
based on reinforcement learning, i.e., we update the mapping
policies and resource allocations accordingly in the next co-
run based on the reward function output. During the procedure,
the state-action table for our agent is trained, and, as we
approximate the table with a neural network in this work, the
coefficients of the neural network are eventually identified.

In the online phase, we deploy the trained agent mentioned
above to solve our optimization problem. The agent regards

2Input can highly influence the application behavior, however this effect is
ignored by using the same inputs in this study. Future extensions are possible
by extending existing studies [33], [34].

the optimization as a classification problem and uses the model
to choose an optimal set of two matrices: co-scheduling job
mixes (S) and resource allocations (R). We use this machine
learning approach as the scheduling and resource optimization
problem is strongly hard as mentioned in the last section,
and we utilize reinforcement learning-based offline training
rather than well-known offline supervised learning because
the labeling is infeasible for our purposes. More specifically,
labeling here associates a given set of jobs (Q) with the best
set of co-scheduling decisions (S) and resource allocations
(R), which takes tremendous amount of time with exhaustive
searches, rendering any possible run time advantage moot.

C. Mapping Reinforcement Learning to Offline Training

In reinforcement learning, an agent ought to take actions
while learning by interacting with the environment in order
to maximize the cumulative reward [35]. By continuously
performing such trial-and-error cycles, the agent eventually
reaches the goal state and returns optimal answers to our
optimization problem. To this end, we need to carefully define
entities/properties of reinforcement learning for our problem,
and the followings are the definitions in this approach.

1) Agent: The agent takes the job queue (Q) as an input (or
a state), and returns a set of two output matrices as an action:
the sets of jobs to be co-scheduled (S) and their corresponding
resource allocations (R). It learns an optimal policy to govern
the actions so as to maximize the accumulation of the reward
signals in the offline training in our approach.

2) Environment: Environment is the agent’s context in
which it operates and interacts. In this work, the environment
consists of the target NUMA system and its hardware features,
including cache/bandwidth partitioning options.

3) State: The state is defined as a set of information
that an agent has about the environment at any given time,
encompassing what is required for deciding the actions. In
our approach, the state contains information about all of jobs
in the current window (Q = J1,J2, · · · ,JW) characterized
by their profiles, job selections, and resource allocations.

4) Action: An action is a state-transitioning operation based
on the current system state. In our approach, an action involves
determining matrices: co-scheduling job selections (S) and
their corresponding resource allocations (R).

5) Reward: The effectiveness of the reinforcement learning
approach is ultimately determined by the definition of the
reward signal. For every action, the agent receives the reward
signal as a numerical value, which quantifies and evaluates an
action at a given state of the system.

D. Obtaining State-Action Relationship via Soft Actor-Critic

Reinforcement Learning is used to establish a state-action
relationship driven by a provided reward signal. At a given
time-step t, the state stt ∈ {Q} and action at ∈ {(S,R)}
define the current system state and action taken, respectively.
The goal is to learn a strategy that maximizes the anticipated
cumulative reward upon executing action at in state stt. This
learning process is steered by the reward signal rwt.

Author’s Preprint: To Appear in IEEE International Conference on Computer Design 2024

We opt for the Soft Actor-Critic (SAC) method [36] for
offline training. SAC, being an off-policy algorithm, simul-
taneously maximizes both cumulative reward and entropy.
The off-policy nature allows the agent to learn from diverse
policies, thereby enhancing sample efficiency. Co-optimizing
for cumulative rewards and entropy empowers the agent to
learn the most optimal policies while effectively exploring
the environment. SAC was originally designed for continuous
action spaces; nevertheless, its effectiveness has led to its
adaptation for discrete action settings as well [37]. We have
incorporated the SAC developed for discrete action settings by
Christodoulou [37] into our approach.

To guide the agent effectively, we implement a two-level
reward function comprising an intermediate reward and a
final reward. The intermediate reward (rwi) serves as a signal
during the formulation of the scheduling policy, while the final
reward (rwf) is utilized for evaluating the effectiveness of the
scheduling policy (see also Table VI in §V).

V. EVALUATION SETUP

A. Evaluation Environment

Table II lists the specifications of our platform which
is composed of two processors that support the emerging
cache/bandwidth partitioning features, i.e., Intel CAT/MBA,
controllable via the rdtset command [18]. In our evaluation,
the cache partitioning feature, i.e., Intel CAT, is applied only to
the last level caches. Although the accuracy and effectiveness
of these partitioning features depend on the CPU generation as
reported in a recent study by Sohal et al. [38], our agent learns
their performance impact throughout the training procedure.
The core/memory mapping affinities are controlled by using
the numactl command [2].

Our approach is implemented with Python using multiple
standard libraries as follows. We build our reinforcement learn-
ing environment using the gymnasium python library [39].
For implementing the agent, we use the PyTorch library [40]
for implementing the deep neural networks for Soft Actor-
Critic Method [37]. Further, we use scikit-learn for
performing additional data pre-processing and feature engi-
neering [41].

We collect hardware performance counters listed in Table III
using the Linux Perf command [42] to profile and char-
acterize the applications. These statistics enable us to assess
the applications’ characteristics in terms of compute intensity,
memory intensity, cache friendliness, and so forth, which are
indispensable for our approach. Furthermore, these statistics
have been selected based on the initial feature engineering,
where we analyzed the correlation between various application
features and co-scheduling throughput.

TABLE II: Evaluation Platform

Name Remarks

CPU Intel(R) Xeon(R) Silver 4116 x2 sockets
OS Ubuntu 20.04.4 LTS, Kernel Version: 5.13.0-22-generic

Software Gcc/Gfortran Version: 9.4.0, Numactl Version: 2.0.12-1,
Rdtset Version: 3.2.0, Python Version: 3.10.12

B. Exploration Space

Here, we present the universe of hardware configurations
we use in our evaluation. The agent in our approach explores
configurations in this space and picks an optimal combination
from them. As described in §III, we choose the core mapping
policy from two options: compact or distributed. As for the
memory mapping policy, we have three options: first-touch,
round-robin, and local-alloc (designated by the numactl
command). For the core counts, we choose from the following
options: 3, 6, 12, 18, and 21 (out of 24 cores). For the cache
allocation, we have five options: 4, 8, 12, 16, and 22 (out of 22
ways on 2 sockets). For the memory bandwidth allocation, we
set from the following five options: 20%, 40%, 60%, 80%, and
100%. During the allocation of cache and memory bandwidth,
we distribute the selected cache ways and memory bandwidth
either in a balanced manner or proportionally (based on the
core allocation ratio) to each socket. In addition to these
actions, a skip option is available to move the current job
to the end of the job window, facilitating the job selection
process. Hence, the exploration space comprises 257 unique
actions [(schedule-level: 2× 3) + (job-level: 5× 5× 5× 2) +
skip].

C. Workloads

We utilize the common HPC benchmarks: Parsec
benchmark suite [43] and the NAS Parallel benchmark
suite [44] as listed in Table IV, as they have been widely used
in other multi-/many-core processor studies. For the offline
training, we exclude 7 programs marked with * in the table and
use the remaining 12 programs. The objective of the exclusion
procedure is to check if our approach can generalize to unseen
applications.

In our evaluation, we first fix the job window size (W)
to 6. We later scale the size as well to assess the impact of
the window size selection. In this work, we fix the maximum

TABLE III: Collected Hardware Performance Counters

Statistics
duration time, task-clock, context-switches, cpu-cycles, instructions, page-faults,
branch-misses, L1-dcache-load-misses, L1-icacheload-misses, LLC-load-misses,

dTLB-load-misses, iTLB-loadmisses

TABLE IV: Evaluation Benchmarks

Suite Benchmark Applications

Parsec barnes*, cholesky*, fft, fmm, lu cb, lu ncb, ocean cp,
ocean ncp, raytrace*, water nsquared*, water spatial

NAS Parallel BT*, CG, DC*, EP, FT, IS*, MG, SP

TABLE V: Tested Job Mixes (W = 6)

Name:{ Jobs ... }
Q1:{fmm, FT, EP, fft, CG, lu ncb}, Q2:{IS*, lu ncb, EP, CG, SP, cholesky*},

Q3:{fft, MG, IS*, lu ncb, lu cb, EP}, Q4:{fmm, IS*, MG, FT, SP, fft},
Q5:{CG, MG, FT, fmm, DC*, water nsquared*}, Q6:{lu ncb, water spatial, fft,

DC*, fmm, MG}, Q7:{ocean ncp, CG, fmm, barnes*, ocean cp, lu ncb},
Q8:{IS*, MG, FT, CG, DC*, ocean ncp}, Q9:{MG, EP, IS*, fft, DC*,
water nsquared*}, Q10:{DC*, barnes*, cholesky*, lu ncb, CG, fmm},

Q11:{lu cb, MG, barnes*, cholesky*, fmm, MG}, Q12:{raytrace*, cholesky*,
DC*, BT*, fft, lu ncb}

Author’s Preprint: To Appear in IEEE International Conference on Computer Design 2024

concurrency (Cmax) to 4, i.e., at most 4 jobs can be co-located
at the same time. Note that the concurrency can be less than
4 depending on the decision made by the agent.

We create 16 different job queues for the agent training,
each of which consists of W programs randomly selected
from the 12 programs. As for the online inference, we test
our approach by randomly creating 12 different job queues by
sampling the jobs from all 19 available jobs. The exact job
mix selections for W = 6 are listed in Table V. Note, the
programs marked with * are unseen in the training.

D. Setup for Training and Inference

Table VI lists the setup used for the reward function and
the agent. As mentioned in §IV, we use two kinds of rewards
in this evaluation: (i) intermediate reward rwi and (ii) final
reward rwf . On one hand, the intermediate reward evaluates
the resource allocation for a selected job, which can be
assessed before launching the job using the associated profile.
It returns a higher reward when: (i) allocating more cores to
a job with higher compute scale factor, (ii) allocating more
cache/bandwidth to a job with higher L3 cache misses, in
other words to a job which might need to access main memory
more often. On the other hand, the final reward refers to
the measured throughput improvement over the time-sharing
executions, which is obtained only after the completion of co-
running a job mix. Most importantly, the intermediate reward
rwi is heuristics-based and is only used for an approximate
idea, whereas the learning is mainly driven by the final
reward rwf . Note, the reward function can be customized for
other factors such as maximizing energy efficiency, minimizing
application slowdown, and achieving fairness by modifying the
definition specified in the table.

In the table, CoreAllocRatio, CacheAllocRatio and
BWAllocRatio are (i) the ratio of allocated cores to the total
number of available cores, (ii) the ratio of allocated cache
ways to the total number of available cache ways, and (iii)
the ratio of allocated memory bandwidth to the total avail-
able memory bandwidth, respectively. ScaleFactorRatio,
DurationRatio and L3CacheMissesRatio are defined as
follows: (i) ScaleFactorRatio is the ratio of scale factor of
the current job to the mean scale factor of the job window.
Here, scale factor is the ratio of running the job on single core
to running the job on all available cores. (ii) DurationRatio
is the ratio of solo-run execution time of the current job to the
mean solo-run execution time of the job window.

TABLE VI: Agent and Reward Function Setups

Type Setups

Reward
Func-
tion

rwi = CoreAllocRatio ∗ (ScaleFactorRatio2 +
DurationRatio2) + (CacheAllocRatio +
BWAllocRatio) ∗ L3CacheMissesRatio2

rwf = (SoloRunTime/CoRunTime − 1) × 100

Agent

[# of neurons in the input layer]: W × (f + 9), [# of hidden
layers for each Network 3, [# of neurons in each hidden layer]:

256/256/256, [# of neurons in the output layer]: 257, [Layer NW]:
Fully connected, [Activation function]: Rectified Linear, Softmax

(iii) L3CacheMissesRatio is the ratio of L3 cache misses
of the current job to the mean L3 cache misses of the job
window.

As described earlier, the agent is configured with the soft
actor-critic method for discrete settings [37], and the details
are listed also in Table VI, where W is the window size
and f is the count of job performance counters used as
job features. In this method, we need three separate neural
networks for function approximations: 1 actor network and 2
critic networks. Specific details about the update rules for each
of the networks can be seen in the work by Christodoulou [37].

The mentioned procedure takes a state vector as input
and provides an action to be taken. At the first time step
of an episode, the schedule-level policies are defined. Next,
each time-step of the training episode determines all of the
required actions for resource allocation for a particular job.
This procedure is meant to converge to the global optimal as
far as possible. After the training procedure is completed, we
perform tests in the evaluation mode for the trained models.

VI. EXPERIMENTAL RESULTS

A. Throughput Comparison among Different Methods

We compare our approach (Cmax : 4) against several
scheduling and resource allocation methodologies. For ”Time
Sharing (Baseline)”, jobs in the given queue are executed
with full system resources without co-scheduling. ”OCRP-
ML” utilizes a state-of-the-art CPU/GPU co-scheduling and
resource partitioning framework proposed by Saba et al. [25],
which works only with Cmax = 2. ”OCRP-ML - BEST”
assesses the theoretical maximum throughput of their work
(Cmax : 2) — an exhaustive search is employed to identify
the optimal combination of job-sets and resource allocations.
To emphasize the significance of job selection, we assess
our reinforcement learning approach with the FIFO order
scheduling in ”RL - FIFO” (Cmax : 4).

Fig. 7 shows the comparison of throughput for the men-
tioned scheduling and resource allocation methods. The X-axis
represents job queues used for evaluations (AM: Arithmetic
Mean) as indicated in Table V, while the Y-axis represents
the relative throughput normalized to that of Time Sharing for
each job queue. We set W = 6 in this comparison.

Overall, our approach outperforms all other scheduling
methods. As compared to the ”Time Sharing”, our approach
achieves a factor of 1.303 throughput improvement. Addition-
ally, we observe a maximum throughput improvement of up
to x1.781. In contrast to the ”OCRP-ML” methods, where
cache/memory bandwidth partitioning is not available and con-
currency is limited, our approach holds a distinct advantage.
Lastly, emphasizing the critical role of job-set selection quality
in co-scheduling, the use of the ”RL - FIFO” scheduling policy
limits the agent from achieving better performance.

B. Verification of Core/Memory Affinity Selection

Here, we evaluate whether the selected job sets are allocated
using the optimal core/memory affinities (or NUMA policies)
for each job queue. Fig. 8 demonstrates the verification by

Author’s Preprint: To Appear in IEEE International Conference on Computer Design 2024

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 AM
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
Th

ro
ug

hp
ut

Time Sharing (Baseline)
OCRP-ML
OCRP-ML - BEST

RL - FIFO
Our Approach

Fig. 7: Throughput Comparison among Differ-
ent Methods (W = 6)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 AM
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Th
ro

ug
hp

ut

Time Sharing (Baseline)
Our Approach
RL - Optimal NUMA Policy

Fig. 8: Throughput Comparison against the
Optimal Affinity Selection (W = 6)

4 6 8
Window Size (W)

4
3

2
M

ax
im

um
 C

on
cu

rre
nc

y
(C

m
ax

)

1.19

1.22

1.25

1.28

1.31

1.34

Av
er

ag
e

Th
ro

ug
hp

ut

Fig. 9: Average Throughput Comparison for
Varying Values of Window Size (W) and
Maximum Concurrency (Cmax)

comparing throughput among different methods for each job
queue. The X-axis represents the various job queues as referred
from the Table V, and the Y-axis represents the relative
throughput normalized to ”Time Sharing”. ”RL - Optimal
NUMA Policy” method refers to running the jobs selected
by the RL agent along with the corresponding resource as-
signments with the optimal core/memory affinity (or NUMA
policy), i.e., cores and memory mapping policy (e.g., compact
with first touch) are selected based on the exhaustive search.

Overall, our approach achieves near-optimal throughput for
almost all cases, and the average throughput degradation
(or room for improvement) compared to ”RL - Optimal
NUMA Policy” is only 6.38%. Note, we can achieve even
further throughput improvement by fixing the reward function
accordingly. In the current implementation, an intermediate
reward is designed in a job-wise manner. However, a global
view that considers all co-located jobs would be a help for
the core/memory mapping affinity selections. This is simply
because the possible affinity selections for a job are restricted
by those of the other co-located jobs.

C. Scaling Scheduling Attributes

In the experiments above, we fixed the window size (W) at
6 and the maximum concurrency (Cmax) at 4. In this section,
we scale both of these scheduling attributes, with W to values
in the range [4, 6, 8] and Cmax in the range [2, 3, 4]. Fig. 9
depicts the comparison of average throughput for different
values of W and Cmax. The x-axis indicates the window size
(W), and the y-axis shows the maximum concurrency (Cmax).
The color coding represents the average throughput for each
combination of the W − Cmax setup. The evaluations have
been done using the same set of jobs as mentioned in Table V.
As we have in-total 72 jobs (6 × 12) in this table, we create
similar job queues using W = 4 and W = 8. We observe that
our approach scales effectively with the scheduling attributes,
as the average throughput shows a gradual improvement with
the scaled values of W and Cmax.

D. Time and Memory Overheads

Finally, we report the time and memory overheads. The
time overhead of online inference compared with each job
execution time is only 1.06% on average across our workloads.

The model training time is in the range of roughly 10-12
hours, which however is needed only once per system. During
inference, the memory overhead of our RL agent is only 13MiB
which is negligible compared with the node memory capacity
in modern systems.

VII. DISCUSSION

Our reinforcement learning-based approach is generic and
naturally applicable to other kinds of HPC systems including
CPU-GPU heterogeneous architectures and hybrid memory-
based systems equipped with emerging memory technologies.
In general, these systems have different types of QoS control
knobs, and in principle, our approach is extensible to optimize
the setups with minor modifications in our agent, reward
function, and benchmark set. Further, optimizing the com-
bination of NUMA affinity and resource partitioning setups
would continue to be significant in HPC throughout the future
given the following architectural trends: (1) HPC nodes are
becoming fatter and fatter; and (2) HPC processors are getting
larger and larger by integrating multiple chiplets, which is
inducing NUMA effects even inside a package.

We plan to extend our work to a cluster scale. This extension
opens up new fundamental challenges such as: synchronizing
resource partitioning setups across nodes to balance the node
performance for multi-node jobs; and decision making on
inter-node core assignment, i.e., compact or distributed across
nodes. Nevertheless, the contributions presented here still
apply and form the necessary foundation. The extension will
come with an integration of our solution here with an exist-
ing cluster management tool, such as the Slurm workload
manager [45]. The integration requires such as (1) porting our
solution to the Slurm framework as a scheduling plugin and
(2) realizing the resource partitioning functionalities inside of
Slurm via such as custom prolog/epilog scripts that internally
handle the Rdtset commandline interface or calling the
PQoS library inside the plugin.

As job selections and core resource/affinity assignments are
typically static decisions in HPC, we focus on the profile-
driven static management. For some dynamically controllable
knobs/resources (e.g., Intel CAT and MBA), runtime control
can be promising, in particular when the applications change

Author’s Preprint: To Appear in IEEE International Conference on Computer Design 2024

their behaviors dynamically. This will be a promising exten-
sion for our work by updating our agent or combining our
work with an existing tool (e.g., DRLPart [24]).

VIII. CONCLUSION

We targeted co-scheduling and resource partitioning on
modern NUMA systems with emerging cache and band-
width partitioning features. We first explored the correlations
between NUMA-aware core/memory assignments and these
new hardware partitioning features, and also demonstrated the
impacts on job pair selections. Based on the observations,
we formulated the job co-scheduling and resource assign-
ment problem in a concrete mathematical form, and we then
proposed a reinforcement learning-based systematic approach
to solve the optimization problem. Our proposed technique
achieved significant throughput improvement up to 78.1%.

ACKNOWLEDGEMENT

This work has received funding from the REGALE project
from EuroHPC JU under grant agreement no. 956560 and the
German Federal Ministry of Education and Research (BMBF)
under grant number 16HPC039K. Additionally, it received
funding from the Plasma PEPSC project under EuroHPC JU
(grant agreement no. 101093261) and the BMBF (grant no.
16HPC075). Further, it was supported by BMBF through the
initiative SCALEXA and the PDExa project (16ME0641).

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous,
and A. R. LeBlanc, “Design of Ion-Implanted MOSFET’s with Very
Small Physical Dimensions,” IEEE Journal of Solid-State Circuits,
vol. 9, no. 5, pp. 256–268, 1974.

[2] A. Kleen, “A numa api for linux,” Novel Inc, 2005.
[3] W. Bolosky, R. Fitzgerald, and M. Scott, “Simple but effective tech-

niques for numa memory management,” in SOSP, 1989, pp. 19–31.
[4] W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler, and A. L. Cox,

“Numa policies and their relation to memory architecture,” in ASPLOS,
1991, p. 212–221.

[5] H. Li, S. Tandri, M. Stumm, and K. C. Sevcik, “Locality and loop
scheduling on numa multiprocessors,” in ICPP, 1993, pp. 140–147.

[6] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating
system support for improving data locality on cc-numa compute servers,”
in ASPLOS, 1996, p. 279–289.

[7] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris, C. A. Nelson,
and C. D. Offner, “Extending openmp for numa machines,” in SC, 2000,
pp. 48–48.

[8] C. McCurdy and J. Vetter, “Memphis: Finding and fixing numa-related
performance problems on multi-core platforms,” in ISPASS, 2010, pp.
87–96.

[9] S. Blagodurov, S. Zhuravlev, A. Fedorova, and A. Kamali, “A case for
numa-aware contention management on multicore systems,” in PACT,
2010, pp. 557–558.

[10] S. Imamura, H. Sasaki, K. Inoue, and D. S. Nikolopoulos, “Power-
capped dvfs and thread allocation with ann models on modern numa
systems,” in ICCD, 2014, pp. 324–331.

[11] B. Lepers, V. Quéma, and A. Fedorova, “Thread and memory placement
on numa systems: Asymmetry matters,” in USENIX ATC, 2015, p.
277–289.

[12] I. Sánchez Barrera et al., “Modeling and optimizing numa effects and
prefetching with machine learning,” in ICS, 2020.

[13] M. Bhadauria and S. A. McKee, “An approach to resource-aware co-
scheduling for cmps,” in ICS, 2010, pp. 189–199.

[14] H. Sasaki, T. Tanimoto, K. Inoue, and H. Nakamura, “Scalability-based
manycore partitioning,” in PACT, 2012, pp. 107–116.

[15] J. Breitbart et al., “Case study on co-scheduling for hpc applications,”
in ICPP Workshops, 2015, pp. 277–285.

[16] ——, “Dynamic co-scheduling driven by main memory bandwidth
utilization,” in CLUSTER, 2017, pp. 400–409.

[17] Q. Zhu, B. Wu, X. Shen, L. Shen, and Z. Wang, “Co-run scheduling
with power cap on integrated cpu-gpu systems,” in IPDPS, 2017, pp.
967–977.

[18] Intel, “Intel(r) rdt software package,” https://github.com/intel/intel-cmt-
cat, 2021, accessed: Nov 30, 2023.

[19] G. Aupy, A. Benoit, B. Goglin, L. Pottier, and Y. Robert, “Co-scheduling
hpc workloads on cache-partitioned cmp platforms,” in CLUSTER, 2018,
pp. 348–358.

[20] K. Nikas et al., “Dicer: Diligent cache partitioning for efficient workload
consolidation,” in ICPP, 2019.

[21] J. Park, S. Park, M. Han, J. Hyun, and W. Baek, “Hypart: A hybrid
technique for practical memory bandwidth partitioning on commodity
servers,” in PACT, 2018.

[22] Y. Xiang, C. Ye, X. Wang, Y. Luo, and Z. Wang, “Emba: Efficient mem-
ory bandwidth allocation to improve performance on intel commodity
processor,” in ICPP, 2019.

[23] J. Park, S. Park, and W. Baek, “Copart: Coordinated partitioning of
last-level cache and memory bandwidth for fairness-aware workload
consolidation on commodity servers,” in EuroSys, 2019.

[24] R. Chen, J. Wu, H. Shi, Y. Li, X. Liu, and G. Wang, “Drlpart:
A deep reinforcement learning framework for optimally efficient and
robust resource partitioning on commodity servers,” in HPDC, 2021, p.
175–188.

[25] I. Saba, E. Arima, D. Liu, and M. Schulz, “Orchestrated co-scheduling,
resource partitioning, and power capping on cpu-gpu heterogeneous
systems via machine learning,” in ARCS, 2022, p. 51–67.

[26] E. Arima, M. Kang, I. Saba, J. Weidendorfer, C. Trinitis, and M. Schulz,
“Optimizing hardware resource partitioning and job allocations on
modern gpus under power caps,” in ICPPW, 2022.

[27] U. Saroliya, E. Arima, D. Liu, and M. Schulz, “Hierarchical resource
partitioning on modern gpus: A reinforcement learning approach,” in
CLUSTER, 2023, pp. 185–196.

[28] D. Álvarez, K. Sala et al., “nos-v: Co-executing hpc applications using
system-wide task scheduling,” arXiv preprint arXiv:2204.10768, 2022.

[29] P. Zou et al., “Contention aware workload and resource co-scheduling
on power-bounded systems,” in NAS, 2019, pp. 1–8.

[30] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in MICRO, 2006, pp. 423–432.

[31] N. Rafique, W.-T. Lim, and M. Thottethodi, “Effective management of
dram bandwidth in multicore processors,” in PACT, 2007, pp. 245–258.

[32] S. Martello et al., “An exact approach to the strip-packing problem,”
INFORMS Journal on Computing, vol. 15, no. 3, pp. 310–319, 2003.

[33] E. Ipek et al., “An approach to performance prediction for parallel
applications,” in Euro-Par, 2005, pp. 196–205.

[34] A. Calotoiu et al., “Fast multi-parameter performance modeling,” in
CLUSTER, 2016, pp. 172–181.

[35] R. S. Sutton, Reinforcement learning: An introduction. MIT press,
2018.

[36] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in ICML, 2018, pp. 1861–1870.

[37] P. Christodoulou, “Soft actor-critic for discrete action settings,” arXiv
preprint arXiv:1910.07207, 2019.

[38] P. Sohal et al., “A closer look at intel resource director technology (rdt),”
in RTNS, 2022, pp. 127–139.

[39] F. Foundation, “Gymnasium documentation,”
https://gymnasium.farama.org/, 2022, accessed: Nov 30, 2023.

[40] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in NIPS, 2019, pp. 8024–8035.

[41] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[42] “Perf wiki,” https://perf.wiki.kernel.org/, accessed: Nov 30, 2023.
[43] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark

suite: Characterization and architectural implications,” in PACT, 2008,
p. 72–81.

[44] D. H. Bailey et al., “The nas parallel benchmarks—summary and
preliminary results,” in Supercomputing, 1991, p. 158–165.

[45] “Slurm workload manager,” https://slurm.schedmd.com/, accessed: Nov
30, 2023.

