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Towards Verified Fairness: Certifying Robustness
in Language Models

Background

As large language models become integral to academia and industry, particularly in high-stakes
decision-making and safety-critical domains, ensuring their robustness, alignment, and trust-
worthiness is crucial [5, 8]. While their transformer-based architecture with attention mecha-
nisms has driven widespread adoption [16], concerns about robustness and safety persist,
especially in tasks like content moderation and fairness enforcement.

A key challenge is their susceptibility to adversarial attacks [6, 14], where small perturbati-
ons—such as synonym substitutions or paraphrasing—can manipulate model behavior [2, 3,
10, 11, 9, 7]. This is particularly problematic in gender bias mitigation [15] and toxicity detection
[12], where robustness is essential to ensure fairness and prevent circumvention of moderati-
on systems. Many natural language processing tasks operate in discrete input spaces of text
sequences, making adversarial robustness verification more challenging [4].

Formal verification of neural networks has gained significant interest in recent years. However,
existing approaches have not been extensively applied to large language models, particularly in
the context of fairness and bias mitigation. Set-based verification methods, such as zonotopes,
provide a precise representation of perturbed embedding spaces [4, 13]. These methods allow
rigorous verification of adversarial inputs by leveraging semantic equivalence classes within the
embedding space, ensuring that model behavior remains unchanged under perturbations.

Description

This work extends formal verification techniques to large language models. We focus on ap-
plying zonotope-based verification to toxicity detection in transformer-based models, ensuring
that adversarially crafted inputs—designed to evade content moderation—cannot manipulate
model behavior. Additionally, we extend this framework to assess gender fairness, verifying
that model predictions remain consistent across equivalent inputs with different gender-related
terms. By proving robustness within a formally verified embedding space, this work contribu-
tes to the broader goal of ensuring safety and fairness in transformer-based language models,
particularly in applications involving censorship, fairness, and ethical AI deployment.

Tasks

• Conduct a comprehensive literature review on state-of-the-art set-based verification tech-
niques for transformer-based models, focusing on recent advancements and challenges.

• Familiarize with the toolbox CORA [1]

• Design and implement a customized transformer architecture, drawing inspiration from
Vaswani et al. (2017) [16]

• Develop and train self-defined embedding models, ensuring optimal representation of
synonyms and gender-related words for task-specific natural language processing app-
lications.

• Apply the zonotope-based verification approach to evaluate transformers on adversarial
datasets, including toxicity review and gender bias-related datasets, assessing model
robustness against synonym attacks and gender fairness violations.
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