Stochastische Signale
(Stochastic Signals)
Dozent: Wolfgang Utschick mit Michael Würth und Jonas Maas
Zielgruppe: Bachelor, 3. Semester
Sprache: Deutsch
Nächste Prüfungen:
wird noch bekannt gegeben.
Weitere Informationen: TUMonline and Moodle
Vorlesungen/Zentralübungen im WS 2024/25
Mentorgruppen im WS 2024/25
Die Termine werden in TUMonline und Moodle bekannt gegeben.
Praktikum im WS 2024/25
Während des Wintersemesters wird alle zwei Wochen ein Praktikumsversuch zur selbstständigen Bearbeitung auf Moodle gestellt. Eine kurze Einführung dazu gibt es jeweils in der Plenumsstunde am Freitagnachmittag. | ||
Freitag | 15:00 – 16:30 (14-tägig) | N1190 |
Inhalt
Wahrscheinlichkeitstheorie: Ergebnisraum, Sigma Algebra, Wahrscheinlichkeitsmaß, Bedingte Wahrscheinlichkeit, Statistische Unabhängigkeit, Satz von Bayes, Diskrete und reelle Zufallsvariablen, Wahrscheinlichkeitsverteilung und -dichte, Produktverteilung und -dichte, Funktionen von Zufallsvariablen, Erwartungwert und Varianz, Bedingte Erwartungswerte, Erzeugende und charakteristische Funktion, Zentraler Grenzwertsatz, Gesetz der großen Zahl, Chebyshev Ungleichung.
Stochastische Standardmodelle: Bernoulliverteilung, Binomialverteilung, Poissionverteilung, Geometrische Verteilung, Exponentialverteilung, Normalverteilung, etc.
Stochastische Zufallsfolgen: Ensemble von Zufallsvariablen vs. Pfadmodell, Verteilungen und Dichten von Zufallsfolgen, Diskreter Random Walk, Konvergenz von Zufallsfolgen, Markoveigenschaft, Markovketten.
Zufallsprozesse: Auto- und Kreuzkorrelationsfunktion, Wiener-Levy Prozess, Poisson Prozess, Markov Prozesse, Klassifikation von Zufallsprozessen, Leistungsdichtespektrum, Wiener-Khintchine Theorem, Lineare Systeme und Zufallsprozesse, Weißes Gaußsches Rauschen, Ableitung und Integration stochastischer Pfade, das MSE-Kalkül und die Karhunen-Loeve Entwicklung von Zufallsprozessen.
MATLAB: Grundlagen, Realisierungen von Zufallsvariablen, Beschreibung von Zufallsvariablen mit numerischen Werkzeugen, Funktionen von Zufallsvariablen und von deren Realisierungen, Umgang mit stochastischen Standardmodellen, numerische Beschreibung und Simulation von Zufallsfolgen und Zufallsprozessen, Verarbeitung von Zufallsfolgen und Prozessen (z.B. Filterung).