Scene Graph-based Real-time Scene Understanding for Assistive Robot Manipulation Task
Description
With the rapid development of embodied intelligent robots, real-time and accurate scene understanding is crucial for robots to complete tasks efficiently and effectively. Scene graphs represent objects and their relations in a scene via a graph structure. Previous studies have generated scene graphs from images or 3D scenes, also with the assistance of large language models (LLMs).
In this work, we investigate the application of scene graphs in assisting the human operator during the teleoperated manipulation task. Leveraging real-time generated scene graphs, the robot system can obtain a comprehensive understanding of the scene and also reason the best solution to complete the manipulation task based on the current robot state.
Prerequisites
- Good Programming Skills (Python, C++)
- Knowledge about Ubuntu/Linux/ROS
- Motivation to learn and conduct research
Contact
dong.yang@tum.de
(Please attach your CV and transcript)