Multi-sensory Based Robot Dynamic manipulation
Lecturer (assistant) | |
---|---|
Number | 0000001328 |
Type | lecture with integrated exercises |
Duration | 6 SWS |
Term | Wintersemester 2018/19 |
Language of instruction | English |
Position within curricula | See TUMonline |
Dates | See TUMonline |
Dates
- 16.10.2018 14:45-17:00 2026, Karlstraße-Seminarraum
- 18.10.2018 14:45-16:45 2026, Karlstraße-Seminarraum
- 23.10.2018 14:45-17:00 2026, Karlstraße-Seminarraum
- 25.10.2018 14:45-16:45 2026, Karlstraße-Seminarraum
- 30.10.2018 14:45-17:00 2026, Karlstraße-Seminarraum
- 06.11.2018 14:45-17:00 2026, Karlstraße-Seminarraum
- 08.11.2018 14:45-16:45 2026, Karlstraße-Seminarraum
- 13.11.2018 14:45-17:00 2026, Karlstraße-Seminarraum
- 15.11.2018 14:45-16:45 2026, Karlstraße-Seminarraum
- 20.11.2018 14:45-17:00 2026, Karlstraße-Seminarraum
- 22.11.2018 14:45-16:45 2026, Karlstraße-Seminarraum
- 27.11.2018 14:45-17:00 2026, Karlstraße-Seminarraum
- 29.11.2018 14:45-16:45 2026, Karlstraße-Seminarraum
- 04.12.2018 14:45-17:00 2026, Karlstraße-Seminarraum
- 06.12.2018 14:45-16:45 2026, Karlstraße-Seminarraum
- 11.12.2018 14:45-17:00 2026, Karlstraße-Seminarraum
- 13.12.2018 14:45-16:45 2026, Karlstraße-Seminarraum
- 18.12.2018 14:45-17:00 2026, Karlstraße-Seminarraum
- 20.12.2018 14:45-16:45 2026, Karlstraße-Seminarraum
- 08.01.2019 14:45-17:00 2026, Karlstraße-Seminarraum
- 10.01.2019 14:45-16:45 2026, Karlstraße-Seminarraum
- 15.01.2019 14:45-17:00 2026, Karlstraße-Seminarraum
- 17.01.2019 14:45-16:45 2026, Karlstraße-Seminarraum
- 22.01.2019 14:45-17:00 2026, Karlstraße-Seminarraum
- 24.01.2019 14:45-16:45 2026, Karlstraße-Seminarraum
- 29.01.2019 14:45-17:00 2026, Karlstraße-Seminarraum
- 31.01.2019 14:45-16:45 2026, Karlstraße-Seminarraum
- 05.02.2019 14:45-17:00 2026, Karlstraße-Seminarraum
- 07.02.2019 14:45-16:45 2026, Karlstraße-Seminarraum
Admission information
Objectives
In this lecture, the student will learn to model serial robots using iterative techniques. The symbolic and close form equations obtained from this process are used to model the Kinematics and Dynamics of a robot. In the second part of the course, the student will learn to use these models to design non-linear control schemes. Additionally, this lecture contains practical sessions where the student will implement several modeling and control examples using Matlab, Simulink and ROS.
Description
Introduction to Robot Modelling (Kinematic and Dynamic modelling).
Denavit–Hartenberg methodology to describe robot joint frames, position and velocity.
Robot Dynamics based on Euler-Lagrange methodology.
Non-linear control for robots (Lyapunov based Analysis).
Model free control.
Model based control (robot regressor approach).
Control in Operational Space.
Impedance control (optional).
Visual Servoing (optional).
The course will be held in English language. The materials will also be in English.
Denavit–Hartenberg methodology to describe robot joint frames, position and velocity.
Robot Dynamics based on Euler-Lagrange methodology.
Non-linear control for robots (Lyapunov based Analysis).
Model free control.
Model based control (robot regressor approach).
Control in Operational Space.
Impedance control (optional).
Visual Servoing (optional).
The course will be held in English language. The materials will also be in English.
Prerequisites
Strong Mathematical background in Linear Algebra, Trigonometry and Calculus.
Basic knowledge in robotics (preferred).
Basic Knowledge in C++ and ROS
All the exercises will be implemented in Matlab and ROS (ubuntu), please bring your laptop installed with ubuntu (14.04), ROS (Indigo).
Basic knowledge in robotics (preferred).
Basic Knowledge in C++ and ROS
All the exercises will be implemented in Matlab and ROS (ubuntu), please bring your laptop installed with ubuntu (14.04), ROS (Indigo).
Examination
individual tutorial assignments : 40%
group project : 50%
final presentation: 10%
group project : 50%
final presentation: 10%
Recommended literature
Peter Corke. Robotics, Vision and Control - Fundamental Algorithms in MATLAB, volume 73 of Springer Tracts in Advanced Robotics. Springer, 2011.
M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and control. John Wiley & Sons, 2006.
J.J. Craig. Introduction to robotics: mechanics and control. Addison-Wesley series in electrical and computer engineering: control engineering. Pearson/Prentice Hall, 2005.
M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and control. John Wiley & Sons, 2006.
J.J. Craig. Introduction to robotics: mechanics and control. Addison-Wesley series in electrical and computer engineering: control engineering. Pearson/Prentice Hall, 2005.