Dr. rer. nat. Roman Karlstetter
Technische Universität München, Informatik 10
Lehrstuhl für Rechnerarchitektur & Parallele Systeme
and
IfTA GmbH (Website)
Junkersstr. 8
82178 Puchheim
Contact:
Email: roman.karlstetter(at)tum.de
Consultation hour:
By appointment
CV
- since 2017-09: Research position at IfTA, partly funded by Bayerische Forschungsstiftung (Optimierung von Gaskraftwerken mit Hilfe von Big Data, Von der Edge zur Cloud und zurück: Skalierbare und Adaptive Sensordatenverarbeitung)
- since 2014-05: Software Engineer at IfTA: responsible for real time combustion monitoring and protection software.
- 2011-10 - 2014-04: Master of Science in Computer Science at TUM. Master Thesis at IfTA on topic "Design and implementation of a software architecture for multi-core DSPs to process and analyze measurement data"
- 2008-10 - 2011-09: Bachelor of Science in Computer Science at TUM
- 1999 - 2008: Maristenkolleg Mindelheim
Publications
- June 2023, Dissertation: An Industrial Sensor Data Processing and Query System
- July 2022: Conference paper, IEEE Edge 2022: Querying Distributed Sensor Streams in the Edge-to-Cloud Continuum
- Mai 2021: Conference paper, CCGrid 2021: Living on the Edge: Efficient Handling of Large Scale Sensor Data
- June 2019: Conference paper, ASME Turbo-Expo 2019: Turning dynamic sensor measurements from gas turbines into insights: a big data approach
- Journal Concurrency and Computation: Practice & Experience 2016: Data mining on vast data sets as a cluster system benchmark
Talks
- IEEE Edge 2022, July 11-15, 2022, Barcelona, Spain: Querying Distributed Sensor Streams in the Edge-to-Cloud Continuum
- CCGrid 2021, Mai 2021, virtual event: Living on the Edge: Efficient Handling of Large Scale Sensor Data (Video presentation)
- ASME Turbo Expo 2019, June 17-21, 2019, Phoenix, Arizona: Turning dynamic sensor measurements from gas turbines into insights: a Big Data approach
- VGB-Fachtagung Gasturbinen 2019, June 5 - 6, 2019, Kurfürstliches Schloß Mainz: Turning dynamic sensor measurements from gas turbines into insights: a Big Data approach