Amir Raoofy
Researcher at LRZ Future Computing & CAPS
Technische Universität München, Informatik 10
Lehrstuhl für Rechnerarchitektur & Parallele Systeme (Prof. Schulz)
Address:
Room I.1.030
Boltzmannstr. 1
85748 Garching b. München
Contact:
Email: amir.raoofy@tum.de
Tel.: +49 (89) 35831 - 8871
Research interests
- Programming and Usage Models
- System Software and Programming
- Analysis of large datasets on HPC systems
- Machine Learning and Data Mining on HPC systems
- Time-series analysis on industrial datasets using HPC systems
- Parallelization and code optimization on accelerators and multi-core HPC systems
- Porting applications to HPC systems
Projects
- Dynamical Exascale Entry Platform - Software for Exascale Architectures (DEEP-SEA) ( www.deep-projects.eu ): Research project sponsored by European Commission and EuroHPC Programmes.
- Commercial off-the-shelf Inference Processor ML Benchmark (MLAB): Research project in collaboration with Airbus Defence and Space GmbH, TUM chair of Big Geospatial Data Management, and Orora Technologies GmbH.
- From the Edge to the Cloud and Back: Scalable and Adaptive Sensor Data Processing (SensE): Research project funded by Bayerische Forschungsstiftung in cooperation with IfTA Ingenieurbüro für Thermoakustik GmbH
- Gas Turbine Optimization using Big Data and Machine Learning (TurbO): Research project funded by Bayerische Forschungsstiftung in cooperation with IfTA Ingenieurbüro für Thermoakustik GmbH
- Porting Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) to LAIK (A Library for Automatic Data Migration in Parallel Applications) Code
Teaching
- WS 22/23: Praktikum - Evaluation of Modern HPC-Architectures and - Accelerators
- WS 21/22: Praktikum - Evaluation of Modern HPC-Architectures and - Accelerators
- SS 21: Praktikum - Evaluation of Modern HPC-Architectures and - Accelerators
- SS 20: Seminar - Cloud Computing: Internet of Things Technologies
- SS 19: Seminar - Geschichte der Rechnerarchitektur
- WS 18/19: Praktikum - Advanced Topics in Computer Architecture and Parallel Systems
- SS 18: Lecture - Parallel Programming (Central Tutorial)
Publications
-
Amir Raoofy, Roman Karlstetter, Martin Schreiber, Carsten Trinitis, Martin Schulz: Overcoming Weak Scaling Challenges in Tree-based Nearest Neighbor Time Series Mining, ISC 2023.
-
Yi Ju, Amir Raoofy, Dai Yang, Erwin Laure, Martin Schulz: Exploiting Reduced Precision for GPU-based Time Series Mining, IPDPS 2022.
-
Max Ghiglione, Amir Raoofy ,Gabriel Dax, Gianluca Furano, Richard Wiest, Carsten Trinitis, Martin Werner, Martin Schulz, Martin Langer: Machine Learning Application Benchmark for In-Orbit On-Board Data Processing, OBDP 2021.
-
Amir Raoofy, Gabriel Dax, Max Ghiglione, Martin Langer, Carsten Trinitis, Martin Werner, and Martin Schulz: Benchmarking Machine Learning Inference in FPGA-based Accelerated Space Applications, MLBench 2021.
-
Roman Karlstetter, Amir Raoofy, Martin Radev, Carsten Trinitis, Jakob Hermann, and Martin Schulz: Living on the Edge: Efficient Handling of Large Scale Sensor Data, CCGrid 2021.
-
Amir Raoofy, Roman Karlstetter, Dai Yang, Carsten Trinitis, Martin Schulz: Time Series Mining at Petascale Performance: ISC High Performance 2020 (Winner of the Hans Meuer Best Paper Award).
-
Roman Karlstetter, Robert Widhopf-Fenk, Jakob Hermann, Driek Rouwenhorst, Amir Raoofy, Carsten Trinitis, Martin Schulz: Turning dynamic sensor measurements from gas turbines into insights: a big data approach. ASME Turbo-Expo conference 2019.
-
Amir Raoofy, Dai Yang, Josef Weidendorfer, Carsten Trinitis and Martin Schulz: Enabling Malleability for Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics using LAIK. PARS Workshop 2019
-
Dai Yang, Moritz Dötterl, Sebastian Rückerl and Amir Raoofy: Hardening the Linux Kernel agains Soft Errors. Poster for The 13th International School on the Effects of Radiation on Embedded Systems for Space
-
Arash Bakhtiari, Dhairya Malhotra, Amir Raoofy, Miriam Mehl, Hans-Joachim Bungartz, George Biros. A parallel arbitrary-order accurate AMR algorithm for the scalar advection-diffusion equation. SC '16.