Institut für Informatik VI Technische Universität München Boltzmannstraße 3 85748 Garching bei München Germany
Office
Parkring 13 85748 Garching-Hochbrück
Curriculum Vitae
2011
Allgemeine Hochschulreife at the Werdenfels-Gymnasium in Garmisch-Partenkirchen, Germany
2014
B.Sc in Electrical Engineering at the Technische Universität München
2016
M.Sc in Electrical Engineering at the Technische Universität München
Since 2017
Research Assistant / PhD. Candidate at the Technische Universität München
Research Interest
My research is dedicated to the question on how one can efficiently assess the reliability of automated driving functions over the whole space of possible driving situations by the use of virtual test domains.
Autonomous Driving
Testing Methods
Scene Risk Assessment
Supervised Thesis
Bachelor Thesis: Befähigung einer Gaming Engine zur Darstellung prototypischer Anzeigen und Bedienfunktionen im Versuchsfahrzeug, Philip Hagemann, BMW M GmbH
Master Thesis: Development of a method for deriving a vehicle dynamic model from real world experiments for highly automated driving simulation, Martin Sigl, BMW M GmbH
Master Thesis: Systematic Variation of Driving Scenarios for the Assessment of Automated Driving, Amar Šaljić
Master Thesis: Deriving a Neuronal Architecture for Scenario Based Multi-Sensor Input Intelligent Roadmodels for Automated Driving Functions, Tim Salzmann, BMW of North America
Master Thesis: Online Modelling and Validation of Map Data for Autonomous Driving in Urban Scenarios, Felix Drost, BMW Group
Master Thesis: Deriving a Distance Function for Scenario Clustering to Estimate the Required Test Coverage of Automated Vehicles, Jonas Kerber, BMW of North America
Jonas Kerber; Sebastian Wagner; Korbinian Groh; Dominik Notz; Thomas Kuehbeck; Daniel Watzenig; Alois Knoll: Clustering of the Scenario Space for the Assessment of Automated Driving. Intelligent Vehicles Symposium 2020, 2020 mehr…BibTeX
Volltext (mediaTUM)
Sebastian Wagner; Alois Knoll; Korbinian Groh; Thomas Kühbeck; Daniel Watzenig; Lutz Eckstein: Virtual Assessment of Automated Driving: Methodology, Challenges, and Lessons Learned. SAE International Journal of Connected and Automated Vehicles 2 (4), 2019 mehr…BibTeX
Volltext (
DOI
)
Korus, Jan-Dominik; Bullinger, Markus; Schütz, Christoph; Garica Ramos, Pilar; Wagner, Sebastian; Müller, Steffen: A Method for Identifying Most Significant Vehicle Parameters for Controller Performance of Autonomous Driving Functions. SAE International Journal of Advances and Current Practices in Mobility 1 (3), 2019, 996-1005 mehr…BibTeX
Volltext (
DOI
)
Dominik Notz, Martin Sigl, Thomas Kühbeck, Sebastian Wagner, Korbinian Groh, Christoph Schütz, Daniel Watzenig: Methods for Improving the Accuracy of the Virtual Assessment of Autonomous Driving. Proceedings of the 8th International Conference on Connected Vehicles and Expo 2019, 2019 mehr…BibTeX
Mark Schiementz, Korbinian Groh, Sebastian Wagner, Thomas Kühbeck: PEGASUS - Test Case Variation and Execution. PEGASUS Symposium 2019, 2019 mehr…BibTeX
Volltext (mediaTUM)
Korbinian Groh, Sebastian Wagner, Thomas Kühbeck, Alois Knoll: PEGASUS - Verification. PEGASUS Symposium 2019, 2019 mehr…BibTeX
Volltext (mediaTUM)
Tim Salzmann, Julian Thomas, Thomas Kühbeck, Jou-ching Sung, Sebastian Wagner, Alois Knoll: Online Path Generation from Sensor Data for Highly Automated Driving Functions. Proceedings of the 22nd IEEE International Conference on Intelligent Transportation Systems, 2019 mehr…BibTeX
Volltext (
DOI
)
Volltext (mediaTUM)
Sebastian Wagner, Korbinian Groh, Thomas Kuehbeck, Alois Knoll: Towards Cross-Verification and Use of Simulation in the Assessment of Automated Driving. Intelligent Vehicles Symposium 2019, 2019 mehr…BibTeX
Volltext (
DOI
)
Volltext (mediaTUM)
Groh, Korbinian; Wagner, Sebastian; Kuehbeck, Thomas; Knoll, Alois: Simulation and Its Contribution to Evaluate Highly Automated Driving Functions. SAE International Journal of Advances and Current Practices in Mobility 1 (2), 2019, 539-549 mehr…BibTeX
Volltext (
DOI
)
Wagner, Sebastian; Groh, Korbinian; Kuhbeck, Thomas; Dorfel, Michael; Knoll, Alois: Using Time-to-React based on Naturalistic Traffic Object Behavior for Scenario-Based Risk Assessment of Automated Driving. 2018 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2018 mehr…BibTeX
Volltext (
DOI
)