Inaktiv: Der Benutzer ist in TUMonline nicht mehr aktiv!
Inactive: The user is not active in TUMonline anymore!

Curriculum Vitae

Etienne Müller is a research assistant and PhD candidate since 2018. He received his Master's degree in Product Development and his Bachelor's Degree in Mechanical Engineering at the Hamburg University of Technology in 2017 and 2014, respectively.

Etienne's current research topic is the development of spiking neural networks in the context of path planning and decision making.

Research Interests

Conversion of today's commonly used analog neural network to spiking neural network for the usage in neuromorphic computing.


Thesis Supervision

Finished:

  • Master Thesis (2021): Performance of Time to First Spike Encoded Spiking Neural Networks
  • Guided Research (2021): Conversion of TransformerNets
  • Master Thesis (2021): Conversion of LSTM-based Recurrent Neural Networks
  • Master Thesis (2021): Conversion of GRU-based Recurrent Neural Networks
  • Research Internship (2020): Carla as Open Source Platform for Analyzing and Evaluating Autonomous Driving
  • Master Thesis (2020): Converting Analogue to Spiking Convolutional Neural Networks for Object Detection
  • Graduation Thesis (2019): Semantic Segmentation of Integrated Circuit Layout Images

Publications

2022

  • Mueller, Etienne; Auge, Daniel; Klimaschka, Simon; Knoll, Alois: Neural Oscillations for Energy-Efficient Hardware Implementation of Sparsely Activated Deep Spiking Neural Networks. Association for the Advancement of Artificial Intelligence (AAAI), 2022Practical Deep Learning in the Wild mehr… BibTeX Volltext (mediaTUM)
  • Mueller, Etienne; Auge, Daniel; Knoll, Alois: Exploiting Inhomogeneities of Subthreshold Transistors as Populations of Spiking Neurons. International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 2022 mehr… BibTeX

2021

  • Auge, Daniel; Hille, Julian; Mueller, Etienne; Knoll, Alois: A Survey of Encoding Techniques for Signal Processing in Spiking Neural Networks. Neural Processing Letters, 2021 mehr… BibTeX Volltext ( DOI ) Volltext (mediaTUM)
  • Daniel Auge, Julian Hille, Etienne Mueller, Alois Knoll: Hand Gesture Recognition in Range-Doppler Images Using Binary Activated Spiking Neural Networks. IEEE International Conference on Automatic Face and Gesture Recognition 2021, 2021 mehr… BibTeX Volltext (mediaTUM)
  • Daniel Auge, Julian Hille, Felix Kreutz, Etienne Mueller, Alois Knoll: End-to-end Spiking Neural Network for Speech Recognition Using Resonating Input Neurons. 30th International Conference on Artificial Neural Networks (ICANN), 2021 mehr… BibTeX Volltext (mediaTUM)
  • Etienne Mueller, Daniel Auge, Alois Knoll: Normalization Hyperparameter Search for Converted Spiking Neural Networks. Bernstein Conference, 2021 mehr… BibTeX Volltext ( DOI ) Volltext (mediaTUM)
  • Etienne Mueller, Julius Hansjakob, Daniel Auge, Alois Knoll: Minimizing Inference Time: Optimization Methods for Converted Deep Spiking Neural Networks. International Joint Conference on Neural Networks (IJCNN), 2021 mehr… BibTeX Volltext (mediaTUM)
  • Mueller, Etienne; Studenyak, Viktor; Auge, Daniel; Knoll, Alois: Spiking Transformer Networks: A Rate Coded Approach for Processing Sequential Data. Internation Conference on Systems and Informatics (ICSAI), 2021 mehr… BibTeX Volltext (mediaTUM)

2020

  • Auge D, Wenner P, Mueller E: Hand Gesture Recognition using Hierarchical Temporal Memory on Radar Sequence Data. Bernstein Conference 2020, 2020 mehr… BibTeX Volltext ( DOI )
  • Daniel Auge, Etienne Mueller: Resonate-and-Fire Neurons as Frequency Selective Input Encoders for Spiking Neural Networks. 2020, mehr… BibTeX Volltext (mediaTUM)
  • Mueller E, Hansjakob J, Auge D: Faster Conversion of Analog to Spiking Neural Networks by Error Centering. Bernstein Conference 2020, 2020 mehr… BibTeX Volltext ( DOI )